These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21480081)

  • 1. HR-pQCT-based homogenised finite element models provide quantitative predictions of experimental vertebral body stiffness and strength with the same accuracy as μFE models.
    Pahr DH; Dall'Ara E; Varga P; Zysset PK
    Comput Methods Biomech Biomed Engin; 2012; 15(7):711-20. PubMed ID: 21480081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast estimation of Colles' fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT.
    Hosseini HS; Dünki A; Fabech J; Stauber M; Vilayphiou N; Pahr D; Pretterklieber M; Wandel J; Rietbergen BV; Zysset PK
    Bone; 2017 Apr; 97():65-75. PubMed ID: 28069517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical versus pre-clinical FE models for vertebral body strength predictions.
    Pahr DH; Schwiedrzik J; Dall'Ara E; Zysset PK
    J Mech Behav Biomed Mater; 2014 May; 33():76-83. PubMed ID: 23333770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA.
    Dall'Ara E; Pahr D; Varga P; Kainberger F; Zysset P
    Osteoporos Int; 2012 Feb; 23(2):563-72. PubMed ID: 21344244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections.
    Varga P; Dall'Ara E; Pahr DH; Pretterklieber M; Zysset PK
    Biomech Model Mechanobiol; 2011 Jul; 10(4):431-44. PubMed ID: 20686811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo repeatability of homogenized finite element analysis based on multiple HR-pQCT sections for assessment of distal radius and tibia strength.
    Schenk D; Mathis A; Lippuner K; Zysset P
    Bone; 2020 Dec; 141():115575. PubMed ID: 32795679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution peripheral quantitative computed tomography (HR-pQCT) can assess microstructural and biomechanical properties of both human distal radius and tibia: Ex vivo computational and experimental validations.
    Zhou B; Wang J; Yu YE; Zhang Z; Nawathe S; Nishiyama KK; Rosete FR; Keaveny TM; Shane E; Guo XE
    Bone; 2016 May; 86():58-67. PubMed ID: 26924718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of distal radius failure load predictions by homogenized- and micro-finite element analyses based on second-generation high-resolution peripheral quantitative CT images.
    Arias-Moreno AJ; Hosseini HS; Bevers M; Ito K; Zysset P; van Rietbergen B
    Osteoporos Int; 2019 Jul; 30(7):1433-1443. PubMed ID: 30997546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified validation of a refined second-generation HR-pQCT based homogenized finite element method to predict strength of the distal segments in radius and tibia.
    Schenk D; Indermaur M; Simon M; Voumard B; Varga P; Pretterklieber M; Lippuner K; Zysset P
    J Mech Behav Biomed Mater; 2022 Jul; 131():105235. PubMed ID: 35588681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone's tissue and structure.
    Stadelmann MA; Schenk DE; Maquer G; Lenherr C; Buck FM; Bosshardt DD; Hoppe S; Theumann N; Alkalay RN; Zysset PK
    Bone; 2020 Dec; 141():115598. PubMed ID: 32829037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.
    Macneil JA; Boyd SK
    Bone; 2008 Jun; 42(6):1203-13. PubMed ID: 18358799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cortical shell and trabecular fabric in finite element analysis of the human vertebral body.
    Chevalier Y; Pahr D; Zysset PK
    J Biomech Eng; 2009 Nov; 131(11):111003. PubMed ID: 20353254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogenized finite element analysis of distal tibia sections: Achievements and limitations.
    Simon M; Indermaur M; Schenk D; Voumard B; Zderic I; Mischler D; Pretterklieber M; Zysset P
    Bone Rep; 2024 Jun; 21():101752. PubMed ID: 38590390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.
    Crawford RP; Cann CE; Keaveny TM
    Bone; 2003 Oct; 33(4):744-50. PubMed ID: 14555280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads.
    Chevalier Y; Charlebois M; Pahr D; Varga P; Heini P; Schneider E; Zysset P
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):477-87. PubMed ID: 18608338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro.
    Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P
    J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.