BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21480271)

  • 1. Volatile components of several virgin and refined oils differing in their botanical origin.
    Uriarte PS; Goicoechea E; Guillen MD
    J Sci Food Agric; 2011 Aug; 91(10):1871-84. PubMed ID: 21480271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds.
    Pouliarekou E; Badeka A; Tasioula-Margari M; Kontakos S; Longobardi F; Kontominas MG
    J Chromatogr A; 2011 Oct; 1218(42):7534-42. PubMed ID: 21871634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of volatile compounds as markers in geographical discrimination of Spanish extra virgin olive oils by chemometric analysis of non-specific chromatography volatile profiles.
    Pizarro C; Rodríguez-Tecedor S; Pérez-del-Notario N; González-Sáiz JM
    J Chromatogr A; 2011 Jan; 1218(3):518-23. PubMed ID: 21163487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the type of oil on the evolution of volatile compounds of taralli during storage.
    Giarnetti M; Caponio F; Paradiso VM; Summo C; Gomes T
    J Food Sci; 2012 Mar; 77(3):C326-31. PubMed ID: 22384958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the oxidative stability of conventional and high-oleic sunflower oil by means of solid-phase microextraction-gas chromatography.
    Petersen KD; Kleeberg KK; Jahreis G; Fritsche J
    Int J Food Sci Nutr; 2012 Mar; 63(2):160-9. PubMed ID: 21854109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME-GC-MS: newly identified compounds, flavors molecular markers, and terpenic profile.
    Cecchi T; Alfei B
    Food Chem; 2013 Dec; 141(3):2025-35. PubMed ID: 23870924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of static headspace, headspace solid phase microextraction, headspace sorptive extraction, and direct thermal desorption techniques on chemical composition of French olive oils.
    Cavalli JF; Fernandez X; Lizzani-Cuvelier L; Loiseau AM
    J Agric Food Chem; 2003 Dec; 51(26):7709-16. PubMed ID: 14664533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry.
    Vichi S; Guadayol JM; Caixach J; López-Tamames E; Buxaderas S
    J Chromatogr A; 2006 Aug; 1125(1):117-23. PubMed ID: 16756984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of northern Italy.
    Vichi S; Pizzale L; Conte LS; Buxaderas S; López-Tamames E
    J Agric Food Chem; 2003 Oct; 51(22):6572-7. PubMed ID: 14558780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils.
    Vigli G; Philippidis A; Spyros A; Dais P
    J Agric Food Chem; 2003 Sep; 51(19):5715-22. PubMed ID: 12952424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approaches.
    Procida G; Cichelli A; Lagazio C; Conte LS
    J Sci Food Agric; 2016 Jan; 96(1):311-8. PubMed ID: 25597626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiles of volatile compounds from nine new hybrids obtained by controlled crossings on olive Chemlali cultivar and Mediterranean varieties.
    Rjiba I; Debbou S; Gazzah N; Chreif I; Hammami M
    Nat Prod Res; 2009; 23(7):622-32. PubMed ID: 19401916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the cultivar-composition relationship in Sicilian olive oils by GC, NMR, and statistical methods.
    Mannina L; Dugo G; Salvo F; Cicero L; Ansanelli G; Calcagni C; Segre A
    J Agric Food Chem; 2003 Jan; 51(1):120-7. PubMed ID: 12502395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different isolation methods for determination of composition of volatiles from Nigella damascena L. seeds.
    Wajs A; Bonikowski R; Kalemba D
    Nat Prod Commun; 2009 Nov; 4(11):1577-80. PubMed ID: 19967995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Headspace solid phase microextraction and gas chromatography-quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers.
    Silva I; Rocha SM; Coimbra MA
    Anal Chim Acta; 2009 Mar; 635(2):167-74. PubMed ID: 19216874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS).
    Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F
    J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: modifications induced by oxidation and suitable markers of oxidative status.
    Vichi S; Pizzale L; Conte LS; Buxaderas S; López-Tamames E
    J Agric Food Chem; 2003 Oct; 51(22):6564-71. PubMed ID: 14558779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between the evolution of the percentage in weight of polar compounds and that of the molar percentage of acyl groups of edible oils submitted to frying temperature.
    Guillén MD; Uriarte PS
    Food Chem; 2013 Jun; 138(2-3):1351-4. PubMed ID: 23411253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.
    Perestrelo R; Silva C; Silva P; Câmara JS
    Food Chem; 2017 Jul; 227():111-121. PubMed ID: 28274410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A retention index calculator simplifies identification of plant volatile organic compounds.
    Lucero M; Estell R; Tellez M; Fredrickson E
    Phytochem Anal; 2009; 20(5):378-84. PubMed ID: 19533596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.