These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21480608)

  • 1. The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces.
    Lira E; Wendt S; Huo P; Hansen JØ; Streber R; Porsgaard S; Wei Y; Bechstein R; Lægsgaard E; Besenbacher F
    J Am Chem Soc; 2011 May; 133(17):6529-32. PubMed ID: 21480608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. McMurry chemistry on TiO(2)(110): Reductive C=C coupling of benzaldehyde driven by titanium interstitials.
    Benz L; Haubrich J; Quiller RG; Jensen SC; Friend CM
    J Am Chem Soc; 2009 Oct; 131(41):15026-31. PubMed ID: 19778050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light.
    Yang Q; Xie C; Xu Z; Gao Z; Du Y
    J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of ammonia on stoichiometric and reduced TiO(2)(001) single crystal surfaces.
    Wilson JN; Idriss H
    Langmuir; 2004 Dec; 20(25):10956-61. PubMed ID: 15568846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Ti(3+) interstitials in TiO(2)(110) reduction and oxidation.
    Bowker M; Bennett RA
    J Phys Condens Matter; 2009 Nov; 21(47):474224. PubMed ID: 21832503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of interstitial sites in the Ti3d defect state in the band gap of titania.
    Wendt S; Sprunger PT; Lira E; Madsen GK; Li Z; Hansen JØ; Matthiesen J; Blekinge-Rasmussen A; Laegsgaard E; Hammer B; Besenbacher F
    Science; 2008 Jun; 320(5884):1755-9. PubMed ID: 18535207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The source of the Ti 3d defect state in the band gap of rutile titania (110) surfaces.
    Mitsuhara K; Okumura H; Visikovskiy A; Takizawa M; Kido Y
    J Chem Phys; 2012 Mar; 136(12):124707. PubMed ID: 22462888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular imaging of reductive coupling reactions: interstitial-mediated coupling of benzaldehyde on reduced TiO2(110).
    Benz L; Haubrich J; Jensen SC; Friend CM
    ACS Nano; 2011 Feb; 5(2):834-43. PubMed ID: 21229961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in surface chemistry--reductive coupling of benzaldehyde on rutile TiO₂(110).
    Clawin PM; Friend CM; Al-Shamery K
    Chemistry; 2014 Jun; 20(25):7665-9. PubMed ID: 24825761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of oxygen vacancies on the binding interactions of NH3 with rutile TiO2(110)-1 × 1.
    Kim B; Li Z; Kay BD; Dohnálek Z; Kim YK
    Phys Chem Chem Phys; 2012 Nov; 14(43):15060-5. PubMed ID: 23034737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of oxides obtained by heating a mixture of peroxoniobic acid and peroxotitanic acid.
    Uekawa N; Oosawa Y; Kojima T; Kakegawa K
    Dalton Trans; 2011 Feb; 40(8):1817-22. PubMed ID: 21258690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110).
    Ratliff JS; Tenney SA; Hu X; Conner SF; Ma S; Chen DA
    Langmuir; 2009 Jan; 25(1):216-25. PubMed ID: 19053659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH.
    Imanishi A; Okamura T; Ohashi N; Nakamura R; Nakato Y
    J Am Chem Soc; 2007 Sep; 129(37):11569-78. PubMed ID: 17722924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT+U study of defects in bulk rutile TiO(2).
    Stausholm-Møller J; Kristoffersen HH; Hinnemann B; Madsen GK; Hammer B
    J Chem Phys; 2010 Oct; 133(14):144708. PubMed ID: 20950031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of O(2) with Pd nanoparticles on alpha-Al(2)O(3)(0001) at low and high O(2) pressures.
    Penner S; Bera P; Pedersen S; Ngo LT; Harris JJ; Campbell CT
    J Phys Chem B; 2006 Dec; 110(48):24577-84. PubMed ID: 17134218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO₂ (110).
    Rieboldt F; Vilhelmsen LB; Koust S; Lauritsen JV; Helveg S; Lammich L; Besenbacher F; Hammer B; Wendt S
    J Chem Phys; 2014 Dec; 141(21):214702. PubMed ID: 25481156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge trapping at the step edges of TiO(2) anatase (101).
    Setvin M; Hao X; Daniel B; Pavelec J; Novotny Z; Parkinson GS; Schmid M; Kresse G; Franchini C; Diebold U
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4714-6. PubMed ID: 24677419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.