These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21480625)
1. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. Bouwmeester H; Poortman J; Peters RJ; Wijma E; Kramer E; Makama S; Puspitaninganindita K; Marvin HJ; Peijnenburg AA; Hendriksen PJ ACS Nano; 2011 May; 5(5):4091-103. PubMed ID: 21480625 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: insights from a human intestinal epithelium in vitro model. Thubagere A; Reinhard BM ACS Nano; 2010 Jul; 4(7):3611-22. PubMed ID: 20560658 [TBL] [Abstract][Full Text] [Related]
3. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver. Oberemm A; Hansen U; Böhmert L; Meckert C; Braeuning A; Thünemann AF; Lampen A J Appl Toxicol; 2016 Mar; 36(3):404-13. PubMed ID: 26434666 [TBL] [Abstract][Full Text] [Related]
4. Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Martirosyan A; Grintzalis K; Polet M; Laloux L; Schneider YJ Toxicol Lett; 2016 Jun; 253():36-45. PubMed ID: 27113704 [TBL] [Abstract][Full Text] [Related]
5. Helodermin-loaded nanoparticles: characterization and transport across an in vitro model of the follicle-associated epithelium. des Rieux A; Fievez V; Momtaz M; Detrembleur C; Alonso-Sande M; Van Gelder J; Cauvin A; Schneider YJ; Préat V J Control Release; 2007 Apr; 118(3):294-302. PubMed ID: 17292503 [TBL] [Abstract][Full Text] [Related]
6. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507 [TBL] [Abstract][Full Text] [Related]
7. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Leonard F; Collnot EM; Lehr CM Mol Pharm; 2010 Dec; 7(6):2103-19. PubMed ID: 20809575 [TBL] [Abstract][Full Text] [Related]
8. Assessing the effects of silver nanoparticles on monolayers of differentiated Caco-2 cells, as a model of intestinal barrier. Vila L; García-Rodríguez A; Cortés C; Marcos R; Hernández A Food Chem Toxicol; 2018 Jun; 116(Pt B):1-10. PubMed ID: 29626574 [TBL] [Abstract][Full Text] [Related]
9. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Jeong GN; Jo UB; Ryu HY; Kim YS; Song KS; Yu IJ Arch Toxicol; 2010 Jan; 84(1):63-9. PubMed ID: 19756516 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism of silver nanoparticles in human intestinal cells. Böhmert L; Niemann B; Lichtenstein D; Juling S; Lampen A Nanotoxicology; 2015; 9(7):852-60. PubMed ID: 25997095 [TBL] [Abstract][Full Text] [Related]
11. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. Williams KM; Gokulan K; Cerniglia CE; Khare S J Nanobiotechnology; 2016 Jul; 14(1):62. PubMed ID: 27465730 [TBL] [Abstract][Full Text] [Related]
12. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. Hanagata N; Zhuang F; Connolly S; Li J; Ogawa N; Xu M ACS Nano; 2011 Dec; 5(12):9326-38. PubMed ID: 22077320 [TBL] [Abstract][Full Text] [Related]
13. Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Farkas J; Christian P; Gallego-Urrea JA; Roos N; Hassellöv M; Tollefsen KE; Thomas KV Aquat Toxicol; 2011 Jan; 101(1):117-25. PubMed ID: 20952077 [TBL] [Abstract][Full Text] [Related]
14. It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. Lichtenstein D; Ebmeyer J; Meyer T; Behr AC; Kästner C; Böhmert L; Juling S; Niemann B; Fahrenson C; Selve S; Thünemann AF; Meijer J; Estrela-Lopis I; Braeuning A; Lampen A Eur J Pharm Biopharm; 2017 Sep; 118():21-29. PubMed ID: 27993735 [TBL] [Abstract][Full Text] [Related]
15. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Foldbjerg R; Olesen P; Hougaard M; Dang DA; Hoffmann HJ; Autrup H Toxicol Lett; 2009 Oct; 190(2):156-62. PubMed ID: 19607894 [TBL] [Abstract][Full Text] [Related]
16. The effects of silver nanoparticles on oyster embryos. Ringwood AH; McCarthy M; Bates TC; Carroll DL Mar Environ Res; 2010; 69 Suppl():S49-51. PubMed ID: 19913905 [TBL] [Abstract][Full Text] [Related]
17. The biological effects and possible modes of action of nanosilver. Völker C; Oetken M; Oehlmann J Rev Environ Contam Toxicol; 2013; 223():81-106. PubMed ID: 23149813 [TBL] [Abstract][Full Text] [Related]
18. Facilitated nanoscale delivery of insulin across intestinal membrane models. Woitiski CB; Sarmento B; Carvalho RA; Neufeld RJ; Veiga F Int J Pharm; 2011 Jun; 412(1-2):123-31. PubMed ID: 21501675 [TBL] [Abstract][Full Text] [Related]
19. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Johnston HJ; Hutchison G; Christensen FM; Peters S; Hankin S; Stone V Crit Rev Toxicol; 2010 Apr; 40(4):328-46. PubMed ID: 20128631 [TBL] [Abstract][Full Text] [Related]
20. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. des Rieux A; Ragnarsson EG; Gullberg E; Préat V; Schneider YJ; Artursson P Eur J Pharm Sci; 2005; 25(4-5):455-65. PubMed ID: 15946828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]