BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 21480863)

  • 1. Modulation of diabetic retinopathy pathophysiology by natural medicines through PPAR-γ-related pharmacology.
    Song MK; Roufogalis BD; Huang TH
    Br J Pharmacol; 2012 Jan; 165(1):4-19. PubMed ID: 21480863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is PPARG the key gene in diabetic retinopathy?
    Costa V; Ciccodicola A
    Br J Pharmacol; 2012 Jan; 165(1):1-3. PubMed ID: 21501146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Update on the Role of Chinese Material Medica and Formulations in Diabetic Retinopathy.
    Vasant More S; Kim IS; Choi DK
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28054988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy.
    Wan TT; Li XF; Sun YM; Li YB; Su Y
    Biomed Pharmacother; 2015 Aug; 74():145-7. PubMed ID: 26349976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment.
    Song MK; Salam NK; Roufogalis BD; Huang TH
    Biochem Pharmacol; 2011 Nov; 82(9):1209-18. PubMed ID: 21820420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-γ/TXNIP pathways.
    Liu Z; Gan S; Fu L; Xu Y; Wang S; Zhang G; Pan D; Tao L; Shen X
    Biomed Pharmacother; 2023 Aug; 164():114978. PubMed ID: 37271074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial Dysfunction in Diabetic Retinopathy.
    Gui F; You Z; Fu S; Wu H; Zhang Y
    Front Endocrinol (Lausanne); 2020; 11():591. PubMed ID: 33013692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peroxisome proliferator-activated receptor pan-agonist bezafibrate suppresses microvascular inflammatory responses of retinal endothelial cells and vascular endothelial growth factor production in retinal pigmented epithelial cells.
    Usui-Ouchi A; Ouchi Y; Ebihara N
    Int Immunopharmacol; 2017 Nov; 52():70-76. PubMed ID: 28866026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of microRNAs in activating neovascularization pathways in diabetic retinopathy.
    Satari M; Aghadavod E; Mirhosseini N; Asemi Z
    J Cell Biochem; 2019 Jun; 120(6):9514-9521. PubMed ID: 30556195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxisome Proliferated Activated Receptors (PPARs): Opportunities and Challenges for Ocular Therapy.
    Khatol P; Saraf S; Jain A
    Crit Rev Ther Drug Carrier Syst; 2018; 35(1):65-97. PubMed ID: 29611471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response.
    Liao YR; Li ZJ; Zeng P; Lan YQ
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1136-1142. PubMed ID: 28843858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenic Role of
    Chen Q; Qiu F; Zhou K; Matlock HG; Takahashi Y; Rajala RVS; Yang Y; Moran E; Ma JX
    Diabetes; 2017 Jun; 66(6):1671-1682. PubMed ID: 28270521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Glut1 in the Neural Retina But Not the RPE Alleviates Polyol Accumulation and Normalizes Early Characteristics of Diabetic Retinopathy.
    Holoman NC; Aiello JJ; Trobenter TD; Tarchick MJ; Kozlowski MR; Makowski ER; De Vivo DC; Singh C; Sears JE; Samuels IS
    J Neurosci; 2021 Apr; 41(14):3275-3299. PubMed ID: 33622781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy.
    Deng G; Moran EP; Cheng R; Matlock G; Zhou K; Moran D; Chen D; Yu Q; Ma JX
    Invest Ophthalmol Vis Sci; 2017 Oct; 58(12):5030-5042. PubMed ID: 28979999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic effects of PPARα agonists on diabetic retinopathy in type 1 diabetes models.
    Chen Y; Hu Y; Lin M; Jenkins AJ; Keech AC; Mott R; Lyons TJ; Ma JX
    Diabetes; 2013 Jan; 62(1):261-72. PubMed ID: 23043158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cell biology of intraocular vascular diseases].
    Ishibashi T
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):923-47. PubMed ID: 10643294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy?
    Ezquer F; Ezquer M; Arango-Rodriguez M; Conget P
    Acta Ophthalmol; 2014 Mar; 92(2):e86-95. PubMed ID: 23773776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of peroxisome proliferator-activated receptor gamma and its ligand on blood-retinal barrier in a streptozotocin-induced diabetic model.
    Muranaka K; Yanagi Y; Tamaki Y; Usui T; Kubota N; Iriyama A; Terauchi Y; Kadowaki T; Araie M
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4547-52. PubMed ID: 17003451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-409-5p promotes retinal neovascularization in diabetic retinopathy.
    Wang Y; Lin W; Ju J
    Cell Cycle; 2020 Jun; 19(11):1314-1325. PubMed ID: 32292119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fufang Xueshuantong alleviates diabetic retinopathy by activating the PPAR signalling pathway and complement and coagulation cascades.
    Sun HH; Chai XL; Li HL; Tian JY; Jiang KX; Song XZ; Wang XR; Fang YS; Ji Q; Liu H; Hao GM; Wang W; Han J
    J Ethnopharmacol; 2021 Jan; 265():113324. PubMed ID: 32890714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.