These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21481292)

  • 1. Prediction of body mass index in mice using dense molecular markers and a regularized neural network.
    Okut H; Gianola D; Rosa GJ; Weigel KA
    Genet Res (Camb); 2011 Jun; 93(3):189-201. PubMed ID: 21481292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle.
    Ehret A; Hochstuhl D; Gianola D; Thaller G
    Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data.
    Felipe VP; Okut H; Gianola D; Silva MA; Rosa GJ
    BMC Genet; 2014 Dec; 15():149. PubMed ID: 25544265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.
    Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D
    Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-enabled prediction of indicator traits of resistance to gastrointestinal nematodes in sheep using parametric models and artificial neural networks.
    Freitas LA; Savegnago RP; Alves AAC; Stafuzza NB; Pedrosa VB; Rocha RA; Rosa GJM; Paz CCP
    Res Vet Sci; 2024 Jan; 166():105099. PubMed ID: 38091815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic breeding value estimation using genetic markers, inferred ancestral haplotypes, and the genomic relationship matrix.
    de Roos AP; Schrooten C; Druet T
    J Dairy Sci; 2011 Sep; 94(9):4708-14. PubMed ID: 21854945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-hidden-layer feed-forward quantum neural network based on Grover learning.
    Liu CY; Chen C; Chang CT; Shih LM
    Neural Netw; 2013 Sep; 45():144-50. PubMed ID: 23545155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian regularization of neural networks.
    Burden F; Winkler D
    Methods Mol Biol; 2008; 458():25-44. PubMed ID: 19065804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial basis function regression methods for predicting quantitative traits using SNP markers.
    Long N; Gianola D; Rosa GJ; Weigel KA; Kranis A; González-Recio O
    Genet Res (Camb); 2010 Jun; 92(3):209-25. PubMed ID: 20667165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes.
    Kizilkaya K; Fernando RL; Garrick DJ
    J Anim Sci; 2010 Feb; 88(2):544-51. PubMed ID: 19820059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximate Bayesian neural networks in genomic prediction.
    Waldmann P
    Genet Sel Evol; 2018 Dec; 50(1):70. PubMed ID: 30577737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks.
    Caballero J; Fernández M
    J Mol Model; 2006 Jan; 12(2):168-81. PubMed ID: 16205958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity to prior specification in Bayesian genome-based prediction models.
    Lehermeier C; Wimmer V; Albrecht T; Auinger HJ; Gianola D; Schmid VJ; Schön CC
    Stat Appl Genet Mol Biol; 2013 Jun; 12(3):375-91. PubMed ID: 23629460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Bayesian regularized BP neural network model for quantitative relationship between the electrochemical reduction potential and molecular structures of chlorinated aromatic compounds].
    Sun W; Zeng GM; Wei WZ; Huang GH
    Huan Jing Ke Xue; 2005 Mar; 26(2):21-7. PubMed ID: 16004294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imputation of missing single nucleotide polymorphism genotypes using a multivariate mixed model framework.
    Calus MP; Veerkamp RF; Mulder HA
    J Anim Sci; 2011 Jul; 89(7):2042-9. PubMed ID: 21357451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian approach to discovering pathogenic SNPs in conserved protein domains.
    Cai Z; Tsung EF; Marinescu VD; Ramoni MF; Riva A; Kohane IS
    Hum Mutat; 2004 Aug; 24(2):178-84. PubMed ID: 15241800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding.
    Pérez-Rodríguez P; Gianola D; Weigel KA; Rosa GJ; Crossa J
    J Anim Sci; 2013 Aug; 91(8):3522-31. PubMed ID: 23658327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines.
    Fernández M; Caballero J
    Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Artificial Neural Networks in the Design and Optimization of a Nanoparticulate Fingolimod Delivery System Based on Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).
    Shahsavari S; Rezaie Shirmard L; Amini M; Abedin Dokoosh F
    J Pharm Sci; 2017 Jan; 106(1):176-182. PubMed ID: 27666377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.