These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 21481585)
1. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Cheng CL; Chang JS Bioresour Technol; 2011 Sep; 102(18):8628-34. PubMed ID: 21481585 [TBL] [Abstract][Full Text] [Related]
2. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. Lo YC; Huang CY; Cheng CL; Lin CY; Chang JS Bioresour Technol; 2011 Sep; 102(18):8384-92. PubMed ID: 21489783 [TBL] [Abstract][Full Text] [Related]
3. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Gao J; Weng H; Zhu D; Yuan M; Guan F; Xi Y Bioresour Technol; 2008 Nov; 99(16):7623-9. PubMed ID: 18346891 [TBL] [Abstract][Full Text] [Related]
4. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. de Almeida MN; Guimarães VM; Bischoff KM; Falkoski DL; Pereira OL; Gonçalves DS; de Rezende ST Appl Biochem Biotechnol; 2011 Sep; 165(2):594-610. PubMed ID: 21573756 [TBL] [Abstract][Full Text] [Related]
5. Production and partial characterization of cellulases and Xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Grigorevski-Lima AL; de Oliveira MM; do Nascimento RP; Bon EP; Coelho RR Appl Biochem Biotechnol; 2013 Feb; 169(4):1373-85. PubMed ID: 23306885 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Zhang J; Tuomainen P; Siika-Aho M; Viikari L Bioresour Technol; 2011 Oct; 102(19):9090-5. PubMed ID: 21767947 [TBL] [Abstract][Full Text] [Related]
7. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes. Lindedam J; Haven MØ; Chylenski P; Jørgensen H; Felby C Bioresour Technol; 2013 Nov; 148():180-8. PubMed ID: 24045205 [TBL] [Abstract][Full Text] [Related]
8. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Pribowo A; Arantes V; Saddler JN Enzyme Microb Technol; 2012 Mar; 50(3):195-203. PubMed ID: 22305175 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Xin F; He J Bioresour Technol; 2013 May; 135():309-15. PubMed ID: 23186668 [TBL] [Abstract][Full Text] [Related]
10. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. Dowe N Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626 [TBL] [Abstract][Full Text] [Related]
11. High-level production of a thermoacidophilic beta-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Ng IS; Li CW; Chan SP; Chir JL; Chen PT; Tong CG; Yu SM; Ho TH Bioresour Technol; 2010 Feb; 101(4):1310-7. PubMed ID: 19837582 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates. Várnai A; Viikari L; Marjamaa K; Siika-aho M Bioresour Technol; 2011 Jan; 102(2):1220-7. PubMed ID: 20736135 [TBL] [Abstract][Full Text] [Related]
13. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Chen SD; Sheu DS; Chen WM; Lo YC; Huang TI; Lin CY; Chang JS Biotechnol Prog; 2007; 23(6):1312-20. PubMed ID: 17924646 [TBL] [Abstract][Full Text] [Related]
14. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
15. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification. Cianchetta S; Galletti S; Burzi PL; Cerato C Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897 [TBL] [Abstract][Full Text] [Related]
16. High production of cellulose degrading endo-1,4-β-D-glucanase using bagasse as a substrate from Bacillus subtilis KIBGE HAS. Bano S; Qader SA; Aman A; Syed MN; Durrani K Carbohydr Polym; 2013 Jan; 91(1):300-4. PubMed ID: 23044136 [TBL] [Abstract][Full Text] [Related]
17. Production of cellulolytic enzymes by fungi Acrophialophora nainiana and Ceratocystis paradoxa using different carbon sources. Barros RR; Oliveira RA; Gottschalk LM; Bon EP Appl Biochem Biotechnol; 2010 May; 161(1-8):448-54. PubMed ID: 20174889 [TBL] [Abstract][Full Text] [Related]
18. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus--production of extracellular enzymes and characterization of the major cellulases. Valášková V; Baldrian P Microbiology (Reading); 2006 Dec; 152(Pt 12):3613-3622. PubMed ID: 17159214 [TBL] [Abstract][Full Text] [Related]
19. Hydrolytic enzyme of cellulose for complex formulation applied research. Lin ZX; Zhang HM; Ji XJ; Chen JW; Huang H Appl Biochem Biotechnol; 2011 May; 164(1):23-33. PubMed ID: 20972891 [TBL] [Abstract][Full Text] [Related]
20. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU. Saratale GD; Oh SE Biodegradation; 2011 Sep; 22(5):905-19. PubMed ID: 21234649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]