BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21481880)

  • 1. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.
    Kim DG; Shertok D; Ching Tee B; Yeni YN
    J Biomech; 2011 Jun; 44(9):1660-5. PubMed ID: 21481880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.
    Kim DG; Navalgund AR; Tee BC; Noble GJ; Hart RT; Lee HR
    Bone; 2012 Nov; 51(5):868-75. PubMed ID: 22944606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bone damage on creep behaviours of human vertebral trabeculae.
    O'Callaghan P; Szarko M; Wang Y; Luo J
    Bone; 2018 Jan; 106():204-210. PubMed ID: 29081379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone creep can cause progressive vertebral deformity.
    Pollintine P; Luo J; Offa-Jones B; Dolan P; Adams MA
    Bone; 2009 Sep; 45(3):466-72. PubMed ID: 19465166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometric measurements can improve prediction of progressive vertebral deformity following vertebral damage.
    Luo J; Dolan P; Adams MA; Annesley-Williams DJ
    Eur Spine J; 2022 Jan; 31(1):70-78. PubMed ID: 34613493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels.
    Yamamoto E; Paul Crawford R; Chan DD; Keaveny TM
    J Biomech; 2006; 39(10):1812-8. PubMed ID: 16038915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A predictive model for creep deformation following vertebral compression fractures.
    Luo J; Dolan P; Adams MA; Annesley-Williams DJ; Wang Y
    Bone; 2020 Dec; 141():115595. PubMed ID: 32814126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body.
    Banse X; Devogelaer JP; Munting E; Delloye C; Cornu O; Grynpas M
    Bone; 2001 May; 28(5):563-71. PubMed ID: 11344057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone.
    Wang J; Kazakia GJ; Zhou B; Shi XT; Guo XE
    J Bone Miner Res; 2015 Sep; 30(9):1641-50. PubMed ID: 25736715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship of whole human vertebral body creep to bone density and texture via clinically available imaging modalities.
    Oravec D; Kim W; Flynn MJ; Yeni YN
    J Biomech; 2022 Apr; 135():111021. PubMed ID: 35245836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines.
    Luo J; Annesley-Williams DJ; Adams MA; Dolan P
    Spine J; 2017 Jun; 17(6):863-874. PubMed ID: 28167249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep of trabecular bone from the human proximal tibia.
    Novitskaya E; Zin C; Chang N; Cory E; Chen P; D'Lima D; Sah RL; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():219-27. PubMed ID: 24857486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension.
    Gaitanis IN; Carandang G; Phillips FM; Magovern B; Ghanayem AJ; Voronov LI; Havey RM; Zindrick MR; Hadjipavlou AG; Patwardhan AG
    Spine J; 2005; 5(1):45-54. PubMed ID: 15653084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive creep behavior of bovine trabecular bone.
    Bowman SM; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech; 1994 Mar; 27(3):301-10. PubMed ID: 8051190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative characterization of trabecular bone micro-architecture using tensor scale and multi-detector CT imaging.
    Liu Y; Saha PK; Xu Z
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):124-31. PubMed ID: 23285543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volume to density relation in adult human bone tissue.
    Tassani S; Ohman C; Baruffaldi F; Baleani M; Viceconti M
    J Biomech; 2011 Jan; 44(1):103-8. PubMed ID: 20850118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.