BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21481968)

  • 1. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery.
    Dobrá J; Vanková R; Havlová M; Burman AJ; Libus J; Storchová H
    J Plant Physiol; 2011 Sep; 168(13):1588-97. PubMed ID: 21481968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions.
    Ku HM; Hu CC; Chang HJ; Lin YT; Jan FJ; Chen CT
    Plant Physiol Biochem; 2011 Oct; 49(10):1147-54. PubMed ID: 21831656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants.
    Peng Z; Lu Q; Verma DP
    Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis.
    Abrahám E; Rigó G; Székely G; Nagy R; Koncz C; Szabados L
    Plant Mol Biol; 2003 Feb; 51(3):363-72. PubMed ID: 12602867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content.
    Dobra J; Motyka V; Dobrev P; Malbeck J; Prasil IT; Haisel D; Gaudinova A; Havlova M; Gubis J; Vankova R
    J Plant Physiol; 2010 Nov; 167(16):1360-70. PubMed ID: 20619485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of levels of proline as an osmolyte in plants under water stress.
    Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K
    Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
    Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A
    J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment.
    Su M; Li XF; Ma XY; Peng XJ; Zhao AG; Cheng LQ; Chen SY; Liu GS
    Plant Sci; 2011 Dec; 181(6):652-9. PubMed ID: 21958707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation.
    Miller G; Stein H; Honig A; Kapulnik Y; Zilberstein A
    Planta; 2005 Sep; 222(1):70-9. PubMed ID: 15809861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress.
    Díaz P; Betti M; Sánchez DH; Udvardi MK; Monza J; Márquez AJ
    New Phytol; 2010 Dec; 188(4):1001-13. PubMed ID: 20796214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.
    Sharma S; Verslues PE
    Plant Cell Environ; 2010 Nov; 33(11):1838-51. PubMed ID: 20545884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging.
    Liu X; Liu S; Wu J; Zhang B; Li X; Yan Y; Li L
    Plant Physiol Biochem; 2013 Sep; 70():354-9. PubMed ID: 23816928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis.
    Székely G; Abrahám E; Cséplo A; Rigó G; Zsigmond L; Csiszár J; Ayaydin F; Strizhov N; Jásik J; Schmelzer E; Koncz C; Szabados L
    Plant J; 2008 Jan; 53(1):11-28. PubMed ID: 17971042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors.
    Kumar MN; Verslues PE
    Physiol Plant; 2015 Jul; 154(3):369-80. PubMed ID: 25263537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Dobrá J; Martincová O; Prásil IT; Gubis J; Vanková R
    Plant Sci; 2012 Jan; 182():49-58. PubMed ID: 22118615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.
    Sengupta D; Guha A; Reddy AR
    J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introgression of Δ
    Sellamuthu G; Tarafdar A; Jasrotia RS; Chaudhary M; Vishwakarma H; Padaria JC
    Transgenic Res; 2024 Jun; 33(3):131-147. PubMed ID: 38739244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Δ
    Signorelli S; Monza J
    Plant Signal Behav; 2017 Nov; 12(11):e1367464. PubMed ID: 28985146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.