BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21482168)

  • 21. Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms.
    Sun W; Zheng B; Lure F; Wu T; Zhang J; Wang BY; Saltzstein EC; Qian W
    Comput Med Imaging Graph; 2014 Jul; 38(5):348-57. PubMed ID: 24725671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of Short-Term Breast Cancer Risk with Fusion of CC- and MLO-Based Risk Models in Four-View Mammograms.
    Li Y; Yuan W; Fan M; Zheng B; Li L
    J Digit Imaging; 2022 Aug; 35(4):910-922. PubMed ID: 35262841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multi-stage fusion framework to classify breast lesions using deep learning and radiomics features computed from four-view mammograms.
    Jones MA; Sadeghipour N; Chen X; Islam W; Zheng B
    Med Phys; 2023 Dec; 50(12):7670-7683. PubMed ID: 37083190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis.
    Huo Z; Giger ML; Vyborny CJ
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1285-92. PubMed ID: 11811828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can Occult Invasive Disease in Ductal Carcinoma In Situ Be Predicted Using Computer-extracted Mammographic Features?
    Shi B; Grimm LJ; Mazurowski MA; Baker JA; Marks JR; King LM; Maley CC; Hwang ES; Lo JY
    Acad Radiol; 2017 Sep; 24(9):1139-1147. PubMed ID: 28506510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new near-term breast cancer risk prediction scheme based on the quantitative analysis of ipsilateral view mammograms.
    Sun W; Tseng TB; Qian W; Saltzstein EC; Zheng B; Yu H; Zhou S
    Comput Methods Programs Biomed; 2018 Mar; 155():29-38. PubMed ID: 29512502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Segmentation and detection of breast cancer in mammograms combining wavelet analysis and genetic algorithm.
    Pereira DC; Ramos RP; do Nascimento MZ
    Comput Methods Programs Biomed; 2014 Apr; 114(1):88-101. PubMed ID: 24513228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
    Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S
    J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying a new maximum local asymmetry feature analysis method to improve near-term breast cancer risk prediction.
    Yan S; Zhang L; Song C
    Phys Med Biol; 2018 Oct; 63(20):205010. PubMed ID: 30255850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using multiscale texture and density features for near-term breast cancer risk analysis.
    Sun W; Tseng TL; Qian W; Zhang J; Saltzstein EC; Zheng B; Lure F; Yu H; Zhou S
    Med Phys; 2015 Jun; 42(6):2853-62. PubMed ID: 26127038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new computer-aided detection scheme based on assessment of local bilateral mammographic feature asymmetry - a preliminary evaluation.
    Kelder A; Zigel Y; Lederman D; Zheng B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6394-7. PubMed ID: 26737756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment.
    Zheng Y; Keller BM; Ray S; Wang Y; Conant EF; Gee JC; Kontos D
    Med Phys; 2015 Jul; 42(7):4149-60. PubMed ID: 26133615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining two mammographic projections in a computer aided mass detection method.
    van Engeland S; Karssemeijer N
    Med Phys; 2007 Mar; 34(3):898-905. PubMed ID: 17441235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applying a new quantitative global breast MRI feature analysis scheme to assess tumor response to chemotherapy.
    Aghaei F; Tan M; Hollingsworth AB; Zheng B
    J Magn Reson Imaging; 2016 Nov; 44(5):1099-1106. PubMed ID: 27080203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computerized analysis of mammographic parenchymal patterns on a large clinical dataset of full-field digital mammograms: robustness study with two high-risk datasets.
    Li H; Giger ML; Lan L; Bancroft Brown J; MacMahon A; Mussman M; Olopade OI; Sennett C
    J Digit Imaging; 2012 Oct; 25(5):591-8. PubMed ID: 22246204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ellipse-fitting based method for efficient registration of breast masses on two mammographic views.
    Pu J; Zheng B; Leader JK; Gur D
    Med Phys; 2008 Feb; 35(2):487-94. PubMed ID: 18383669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of computerized mass detection on mammograms: fusion of two-view information.
    Paquerault S; Petrick N; Chan HP; Sahiner B; Helvie MA
    Med Phys; 2002 Feb; 29(2):238-47. PubMed ID: 11865995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases.
    Heidari M; Mirniaharikandehei S; Liu W; Hollingsworth AB; Liu H; Zheng B
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1235-1244. PubMed ID: 31603818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents.
    Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA
    Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying a new computer-aided detection scheme generated imaging marker to predict short-term breast cancer risk.
    Mirniaharikandehei S; Hollingsworth AB; Patel B; Heidari M; Liu H; Zheng B
    Phys Med Biol; 2018 May; 63(10):105005. PubMed ID: 29667606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.