BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21482173)

  • 21. Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes.
    Ramazzina I; Folli C; Secchi A; Berni R; Percudani R
    Nat Chem Biol; 2006 Mar; 2(3):144-8. PubMed ID: 16462750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice.
    Werner AK; Medina-Escobar N; Zulawski M; Sparkes IA; Cao FQ; Witte CP
    Plant Physiol; 2013 Oct; 163(2):672-81. PubMed ID: 23940254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-performance liquid chromatography method for separation of purine bases, nucleosides and ureides: application to studies on purine catabolism in higher plants.
    Ashihara H; Yabuki N; Mitsui K
    J Biochem Biophys Methods; 1990 Jun; 21(1):59-63. PubMed ID: 2212466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage.
    Xi H; Schneider BL; Reitzer L
    J Bacteriol; 2000 Oct; 182(19):5332-41. PubMed ID: 10986234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved alternative splicing of Arabidopsis transthyretin-like determines protein localization and S-allantoin synthesis in peroxisomes.
    Lamberto I; Percudani R; Gatti R; Folli C; Petrucco S
    Plant Cell; 2010 May; 22(5):1564-74. PubMed ID: 20511299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ureides are accumulated similarly in response to UV-C irradiation and wounding in Arabidopsis leaves but are remobilized differently during recovery.
    Soltabayeva A; Bekturova A; Kurmanbayeva A; Oshanova D; Nurbekova Z; Srivastava S; Standing D; Sagi M
    J Exp Bot; 2022 Jan; 73(3):1016-1032. PubMed ID: 34606608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The level of enzymes involved in the allantoin metabolism of Bacillus fastidiosus grown under different conditions.
    Muruke MS; Op den Camp HJ; Semesi AK; van der Drift C
    Curr Microbiol; 1995 Jan; 30(1):45-7. PubMed ID: 7765882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the physiology of Bacillus fastidiosus.
    Kaltwasser H
    J Bacteriol; 1971 Sep; 107(3):780-6. PubMed ID: 5095289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria.
    Serventi F; Ramazzina I; Lamberto I; Puggioni V; Gatti R; Percudani R
    ACS Chem Biol; 2010 Feb; 5(2):203-14. PubMed ID: 20038185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymes and cellular interplay required for flux of fixed nitrogen to ureides in bean nodules.
    Voß L; Heinemann KJ; Herde M; Medina-Escobar N; Witte CP
    Nat Commun; 2022 Sep; 13(1):5331. PubMed ID: 36088455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AtAAH encodes a protein with allantoate amidohydrolase activity from Arabidopsis thaliana.
    Todd CD; Polacco JC
    Planta; 2006 Apr; 223(5):1108-13. PubMed ID: 16496096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of purine catabolism using 14C-glycine as tracer.
    Pizzichini M; Pandolfi ML; Cinci G; Terzuoli L; Porcelli B; Pagani R; Fulceri R
    Biochem Soc Trans; 1992 Nov; 20(4):376S. PubMed ID: 1487036
    [No Abstract]   [Full Text] [Related]  

  • 33. [Uric acid degradation and biosynthesis of the enzymes uricase, glyoxylate carboligase and urease in Hydrogenomonas H 16. II. Effect of uric acid, fructose and nitrogen deficiency on enzyme formation].
    Kaltwasser H
    Arch Mikrobiol; 1969; 65(3):288-302. PubMed ID: 4988686
    [No Abstract]   [Full Text] [Related]  

  • 34. Regulation of uric acid metabolism and excretion.
    Maiuolo J; Oppedisano F; Gratteri S; Muscoli C; Mollace V
    Int J Cardiol; 2016 Jun; 213():8-14. PubMed ID: 26316329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purine bases and atheromatous plaque.
    Terzuoli L; Marinello E; Felici C; Frosi B; Setacci C; Giubbolini M; Porcelli B
    Int J Immunopathol Pharmacol; 2004; 17(3 Suppl):31-3. PubMed ID: 16857104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theophylline-induced increase in plasma uric acid--purine catabolism increased by theophylline.
    Yamamoto T; Moriwaki Y; Suda M; Takahashi S; Hiroishi K; Higashino K
    Int J Clin Pharmacol Ther Toxicol; 1991 Jul; 29(7):257-61. PubMed ID: 1889911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purine Metabolism Dysfunctions: Experimental Methods of Detection and Diagnostic Potential.
    Cicero AFG; Fogacci F; Di Micoli V; Angeloni C; Giovannini M; Borghi C
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator.
    Schultz AC; Nygaard P; Saxild HH
    J Bacteriol; 2001 Jun; 183(11):3293-302. PubMed ID: 11344136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic assay of allantoin in serum using allantoinase and allantoate amidohydrolase.
    Muratsubaki H; Satake K; Enomoto K
    Anal Biochem; 2006 Dec; 359(2):161-6. PubMed ID: 17081493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recapture of [S]-allantoin, the product of the two-step degradation of uric acid, by urate oxidase.
    Gabison L; Chiadmi M; Colloc'h N; Castro B; El Hajji M; Prangé T
    FEBS Lett; 2006 Apr; 580(8):2087-91. PubMed ID: 16545381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.