These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21482280)

  • 21. Development and characterization of microbial biosensors for evaluating low biochemical oxygen demand in rivers.
    Chee GJ
    Talanta; 2013 Dec; 117():366-70. PubMed ID: 24209354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Feb; 151(1):171-8. PubMed ID: 17618738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment.
    Essam T; Aly Amin M; El Tayeb O; Mattiasson B; Guieysse B
    Water Res; 2007 Apr; 41(8):1697-704. PubMed ID: 17350074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.
    Neumegen RA; Fernández-Alba AR; Chisti Y
    Environ Toxicol; 2005 Apr; 20(2):160-4. PubMed ID: 15793824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of p-nitrophenol by P. putida.
    Kulkarni M; Chaudhari A
    Bioresour Technol; 2006 May; 97(8):982-8. PubMed ID: 16009549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli.
    Catterall K; Robertson D; Hudson S; Teasdale PR; Welsh DT; John R
    Talanta; 2010 Jul; 82(2):751-7. PubMed ID: 20602965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors.
    Leedjärv A; Ivask A; Virta M; Kahru A
    Chemosphere; 2006 Sep; 64(11):1910-9. PubMed ID: 16581105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor.
    Serra B; Morales MD; Reviejo AJ; Hall EH; Pingarrón JM
    Anal Biochem; 2005 Jan; 336(2):289-94. PubMed ID: 15620894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation.
    Cui R; Chung WJ; Jahng D
    Biosens Bioelectron; 2005 Mar; 20(9):1788-95. PubMed ID: 15681195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives.
    Korkut S; Keskinler B; Erhan E
    Talanta; 2008 Sep; 76(5):1147-52. PubMed ID: 18761169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain.
    Wasi S; Jeelani G; Ahmad M
    Chemosphere; 2008 Apr; 71(7):1348-55. PubMed ID: 18164050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365.
    Tsai SY; Juang RS
    J Hazard Mater; 2006 Nov; 138(1):125-32. PubMed ID: 16806688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water.
    Yu D; Yong YC; Liu C; Fang Y; Bai L; Dong S
    Chemosphere; 2017 Oct; 184():106-111. PubMed ID: 28582765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver nanotoxicity using a light-emitting biosensor Pseudomonas putida isolated from a wastewater treatment plant.
    Dams RI; Biswas A; Olesiejuk A; Fernandes T; Christofi N
    J Hazard Mater; 2011 Nov; 195():68-72. PubMed ID: 21906877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Development of biosensors for phenol determination from bacteria found in petroleum fields of West Siberia].
    Makarenko AA; Bezverbnaia IP; Kosheleva IA; Kuvichkina TN; Il'iasov PV; Reshetilov AN
    Prikl Biokhim Mikrobiol; 2002; 38(1):29-34. PubMed ID: 11852563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel amperometric biosensor for the detection of nitrophenol.
    Kafi AK; Chen A
    Talanta; 2009 Jun; 79(1):97-102. PubMed ID: 19376350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH-mediated dual-cloud point extraction as a preconcentration and clean-up technique for capillary electrophoresis determination of phenol and m-nitrophenol.
    Wei W; Yin XB; He XW
    J Chromatogr A; 2008 Aug; 1202(2):212-5. PubMed ID: 18644597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1.
    Kim MK; Singleton I; Yin CR; Quan ZX; Lee M; Lee ST
    Lett Appl Microbiol; 2006 May; 42(5):495-500. PubMed ID: 16620209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions.
    Ibarra-Escutia P; Gómez JJ; Calas-Blanchard C; Marty JL; Ramírez-Silva MT
    Talanta; 2010 Jun; 81(4-5):1636-42. PubMed ID: 20441951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating use of ferricyanide-mediated respiration bioassays to quantify stimulatory and inhibitory effects on Escherichia coli populations.
    Catterall K; Robertson D; Teasdale PR; Welsh DT; John R
    Talanta; 2010 Mar; 80(5):1980-5. PubMed ID: 20152442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.