BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21482297)

  • 1. Site-selective probe for investigating the asynchronous unfolding of domains in bovine serum albumin.
    Wu H; Wang P; Hu X; Dai Z; Zou X
    Talanta; 2011 May; 84(3):881-6. PubMed ID: 21482297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent probing of urea-induced chemical unfolding of bovine serum albumin by intramolecular charge transfer fluorescence probe E-3-(4-dimethylamino-naphthalen-1-yl)-acrylic acid.
    Ghosh S; Guchhait N
    Photochem Photobiol; 2010; 86(2):290-6. PubMed ID: 20003158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies on the binding of cobalt(II) 1,10-phenanthroline complex to bovine serum albumin.
    Zhang YZ; Li HR; Dai J; Chen WJ; Zhang J; Liu Y
    Biol Trace Elem Res; 2010 Jun; 135(1-3):136-52. PubMed ID: 19727573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining time-resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin-curcumin complex during unfolding and refolding processes.
    Barakat C; Patra D
    Luminescence; 2013; 28(2):149-55. PubMed ID: 22311564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical-induced unfolding of cofactor-free protein monitored by electrochemistry.
    Guo LH; Qu N
    Anal Chem; 2006 Sep; 78(17):6275-8. PubMed ID: 16944913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxic effects of ethanol on bovine serum albumin.
    Liu R; Qin P; Wang L; Zhao X; Liu Y; Hao X
    J Biochem Mol Toxicol; 2010; 24(1):66-71. PubMed ID: 20175145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bromophenol blue binding as a probe to study urea and guanidine hydrochloride denaturation of bovine serum albumin.
    Halim AA; Kadir HA; Tayyab S
    J Biochem; 2008 Jul; 144(1):33-8. PubMed ID: 18344543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of 5-(alkoxy)naphthalen-1-amine with bovine serum albumin and its effect on the conformation of protein.
    Ojha B; Das G
    J Phys Chem B; 2010 Mar; 114(11):3979-86. PubMed ID: 20199039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the interactions of mixtures of two beta-agonists steroids with bovine serum albumin: a fluorescence spectroscopy and chemometrics investigation.
    Ni Y; Zhang Q; Kokot S
    Analyst; 2010 Aug; 135(8):2059-68. PubMed ID: 20544093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrophotometric study of the interaction between chlorotetracycline and bovine serum albumin using Eosin Y as site marker with the aid of chemometrics.
    Ni Y; Liu Q; Kokot S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):443-8. PubMed ID: 21163687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the interaction between a new Schiff-base complex and bovine serum albumin by fluorescence spectroscopy.
    Xiang Y; Wu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(2):430-6. PubMed ID: 20598629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes.
    Abou-Zied OK; Al-Shihi OI
    J Am Chem Soc; 2008 Aug; 130(32):10793-801. PubMed ID: 18642807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the interaction between Cu phen2+3 and bovine serum albumin by spectroscopic methods.
    Zhang YZ; Zhang XP; Hou HN; Dai J; Liu Y
    Biol Trace Elem Res; 2008 Mar; 121(3):276-87. PubMed ID: 17960331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods.
    Zhang YZ; Zhou B; Zhang XP; Huang P; Li CH; Liu Y
    J Hazard Mater; 2009 Apr; 163(2-3):1345-52. PubMed ID: 18786760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the interaction between tetraphenylporphyrin compounds and bovine serum albumin.
    Tian J; Liu X; Zhao Y; Zhao S
    Luminescence; 2007; 22(5):446-54. PubMed ID: 17610308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies on the interaction of Congo Red with bovine serum albumin.
    Zhang YZ; Xiang X; Mei P; Dai J; Zhang LL; Liu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):907-14. PubMed ID: 19155189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV-visible absorption and fluorescence spectroscopy.
    Gentili PL; Ortica F; Favaro G
    J Phys Chem B; 2008 Dec; 112(51):16793-801. PubMed ID: 19367911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photostability of the anthracene chromophore in aqueous medium upon protein encapsulation.
    Alonso R; Yamaji M; Jiménez MC; Miranda MA
    J Phys Chem B; 2010 Sep; 114(34):11363-9. PubMed ID: 20695469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of domain specific ligands to study urea-induced unfolding of bovine serum albumin.
    Tayyab S; Sharma N; Mushahid Khan M
    Biochem Biophys Res Commun; 2000 Oct; 277(1):83-8. PubMed ID: 11027644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter.
    Paul BK; Samanta A; Guchhait N
    J Phys Chem B; 2010 May; 114(18):6183-96. PubMed ID: 20397640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.