BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 21482411)

  • 21. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1.
    Norden PR; Kim DJ; Barry DM; Cleaver OB; Davis GE
    PLoS One; 2016; 11(1):e0147758. PubMed ID: 26812085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defining an Upstream VEGF (Vascular Endothelial Growth Factor) Priming Signature for Downstream Factor-Induced Endothelial Cell-Pericyte Tube Network Coassembly.
    Bowers SLK; Kemp SS; Aguera KN; Koller GM; Forgy JC; Davis GE
    Arterioscler Thromb Vasc Biol; 2020 Dec; 40(12):2891-2909. PubMed ID: 33086871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices.
    Davis GE; Bayless KJ
    Microcirculation; 2003 Jan; 10(1):27-44. PubMed ID: 12610662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis.
    Kim DJ; Norden PR; Salvador J; Barry DM; Bowers SLK; Cleaver O; Davis GE
    PLoS One; 2017; 12(9):e0184461. PubMed ID: 28910325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices.
    Lee PF; Yeh AT; Bayless KJ
    Exp Cell Res; 2009 Feb; 315(3):396-410. PubMed ID: 19041305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization.
    Stratman AN; Davis GE
    Microsc Microanal; 2012 Feb; 18(1):68-80. PubMed ID: 22166617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics.
    Durham JT; Surks HK; Dulmovits BM; Herman IM
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C878-92. PubMed ID: 25143350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices.
    Bayless KJ; Davis GE
    Biochem Biophys Res Commun; 2003 Dec; 312(4):903-13. PubMed ID: 14651957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions.
    Smith AO; Bowers SL; Stratman AN; Davis GE
    PLoS One; 2013; 8(12):e85147. PubMed ID: 24391990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices.
    Fisher KE; Sacharidou A; Stratman AN; Mayo AM; Fisher SB; Mahan RD; Davis MJ; Davis GE
    J Cell Sci; 2009 Dec; 122(Pt 24):4558-69. PubMed ID: 19934222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization.
    Stratman AN; Schwindt AE; Malotte KM; Davis GE
    Blood; 2010 Nov; 116(22):4720-30. PubMed ID: 20739660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3.
    Saunders WB; Bohnsack BL; Faske JB; Anthis NJ; Bayless KJ; Hirschi KK; Davis GE
    J Cell Biol; 2006 Oct; 175(1):179-91. PubMed ID: 17030988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiogenesis.
    Senger DR; Davis GE
    Cold Spring Harb Perspect Biol; 2011 Aug; 3(8):a005090. PubMed ID: 21807843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation and Characterization of Endothelial Cell Invasion and Sprouting Behavior.
    Salvador J; Davis GE
    Methods Mol Biol; 2018; 1846():249-259. PubMed ID: 30242764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression.
    Davis GE; Senger DR
    Curr Opin Hematol; 2008 May; 15(3):197-203. PubMed ID: 18391785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead.
    van Hinsbergh VW; Koolwijk P
    Cardiovasc Res; 2008 May; 78(2):203-12. PubMed ID: 18079100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling.
    Fisher KE; Pop A; Koh W; Anthis NJ; Saunders WB; Davis GE
    Mol Cancer; 2006 Dec; 5():69. PubMed ID: 17156449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices.
    Bayless KJ; Davis GE
    J Cell Sci; 2002 Mar; 115(Pt 6):1123-36. PubMed ID: 11884513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells.
    Füller T; Korff T; Kilian A; Dandekar G; Augustin HG
    J Cell Sci; 2003 Jun; 116(Pt 12):2461-70. PubMed ID: 12734395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation.
    Ispanovic E; Serio D; Haas TL
    Am J Physiol Cell Physiol; 2008 Sep; 295(3):C600-10. PubMed ID: 18562481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.