These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21482462)

  • 1. Hydrogen production: two stage processes for waste degradation.
    Gómez X; Fernández C; Fierro J; Sánchez ME; Escapa A; Morán A
    Bioresour Technol; 2011 Sep; 102(18):8621-7. PubMed ID: 21482462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photofermentative hydrogen production from wastes.
    Keskin T; Abo-Hashesh M; Hallenbeck PC
    Bioresour Technol; 2011 Sep; 102(18):8557-68. PubMed ID: 21530244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative biohydrogen production systems integration.
    Guwy AJ; Dinsdale RM; Kim JR; Massanet-Nicolau J; Premier G
    Bioresour Technol; 2011 Sep; 102(18):8534-42. PubMed ID: 21621996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Solid wastes treatment process and biohydrogen].
    Li Y; Wei Y; Wang H
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):914-20. PubMed ID: 18807969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.
    Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF
    Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen generation via anaerobic fermentation of paper mill wastes.
    Valdez-Vazquez I; Sparling R; Risbey D; Rinderknecht-Seijas N; Poggi-Varaldo HM
    Bioresour Technol; 2005 Nov; 96(17):1907-13. PubMed ID: 16084370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for improving biological hydrogen production.
    Hallenbeck PC; Abo-Hashesh M; Ghosh D
    Bioresour Technol; 2012 Apr; 110():1-9. PubMed ID: 22342581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass.
    Antonopoulou G; Gavala HN; Skiadas IV; Angelopoulos K; Lyberatos G
    Bioresour Technol; 2008 Jan; 99(1):110-9. PubMed ID: 17257834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.
    Lu L; Xing D; Liu B; Ren N
    Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
    Sharma S; Basu S; Shetti NP; Aminabhavi TM
    Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.
    Robledo-Narváez PN; Muñoz-Páez KM; Poggi-Varaldo HM; Ríos-Leal E; Calva-Calva G; Ortega-Clemente LA; Rinderknecht-Seijas N; Estrada-Vázquez C; Ponce-Noyola MT; Salazar-Montoya JA
    J Environ Manage; 2013 Oct; 128():126-37. PubMed ID: 23732191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen and methane production from household solid waste in the two-stage fermentation process.
    Liu D; Liu D; Zeng RJ; Angelidaki I
    Water Res; 2006 Jun; 40(11):2230-6. PubMed ID: 16725172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.
    De Gioannis G; Muntoni A; Polettini A; Pomi R
    Waste Manag; 2013 Jun; 33(6):1345-61. PubMed ID: 23558084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].
    Li J; Zhang W; Yin F; Xu R; Chen Y
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.
    Chookaew T; Prasertsan P; Ren ZJ
    N Biotechnol; 2014 Mar; 31(2):179-84. PubMed ID: 24380781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of hydrogen production from ripened fruits by a combined two-stage (dark/dark) fermentation system.
    Hwang JH; Choi JA; Abou-Shanab RA; Min B; Song H; Kim Y; Lee ES; Jeon BH
    Bioresour Technol; 2011 Jan; 102(2):1051-8. PubMed ID: 20846852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of slaughterhouse waste on fermentative H2 production from food waste: preliminary results.
    Boni MR; Sbaffoni S; Tuccinardi L
    Waste Manag; 2013 Jun; 33(6):1362-71. PubMed ID: 23548510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane production from sweet sorghum residues via a two-stage process.
    Stamatelatou K; Dravillas K; Lyberatos G
    Water Sci Technol; 2003; 48(4):235-8. PubMed ID: 14531448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.