These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21482578)
1. A database of thermodynamic properties of the reactions of glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway. Li X; Wu F; Qi F; Beard DA Database (Oxford); 2011; 2011():bar005. PubMed ID: 21482578 [TBL] [Abstract][Full Text] [Related]
2. A database of thermodynamic quantities for the reactions of glycolysis and the tricarboxylic acid cycle. Li X; Dash RK; Pradhan RK; Qi F; Thompson M; Vinnakota KC; Wu F; Yang F; Beard DA J Phys Chem B; 2010 Dec; 114(49):16068-82. PubMed ID: 20446702 [TBL] [Abstract][Full Text] [Related]
3. Integrating glycolysis, citric acid cycle, pentose phosphate pathway, and fatty acid beta-oxidation into a single computational model. Kloska SM; Pałczyński K; Marciniak T; Talaśka T; Wysocki BJ; Davis P; Wysocki TA Sci Rep; 2023 Sep; 13(1):14484. PubMed ID: 37660197 [TBL] [Abstract][Full Text] [Related]
4. Effect of reversible reactions on isotope label redistribution--analysis of the pentose phosphate pathway. Follstad BD; Stephanopoulos G Eur J Biochem; 1998 Mar; 252(3):360-71. PubMed ID: 9546650 [TBL] [Abstract][Full Text] [Related]
5. Accelerated Metabolite Levels of Aerobic Glycolysis and the Pentose Phosphate Pathway Are Required for Efficient Replication of Infectious Spleen and Kidney Necrosis Virus in Chinese Perch Brain Cells. Guo X; Wu S; Li N; Lin Q; Liu L; Liang H; Niu Y; Huang Z; Fu X Biomolecules; 2019 Sep; 9(9):. PubMed ID: 31480692 [TBL] [Abstract][Full Text] [Related]
6. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis. Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228 [TBL] [Abstract][Full Text] [Related]
7. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Board M; Humm S; Newsholme EA Biochem J; 1990 Jan; 265(2):503-9. PubMed ID: 2302181 [TBL] [Abstract][Full Text] [Related]
8. Impaired Pentose Phosphate Pathway in the Spinal Cord of the hSOD1 Tefera TW; Bartlett K; Tran SS; Hodson MP; Borges K Mol Neurobiol; 2019 Aug; 56(8):5844-5855. PubMed ID: 30685842 [TBL] [Abstract][Full Text] [Related]
9. An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver. Jin ES; Sherry AD; Malloy CR J Biol Chem; 2016 Sep; 291(36):19031-41. PubMed ID: 27432878 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. Luo B; Groenke K; Takors R; Wandrey C; Oldiges M J Chromatogr A; 2007 Apr; 1147(2):153-64. PubMed ID: 17376459 [TBL] [Abstract][Full Text] [Related]
11. Jacobson TB; Adamczyk PA; Stevenson DM; Regner M; Ralph J; Reed JL; Amador-Noguez D Metab Eng; 2019 Jul; 54():301-316. PubMed ID: 31078792 [TBL] [Abstract][Full Text] [Related]
12. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542 [TBL] [Abstract][Full Text] [Related]
13. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Ralser M Biochem J; 2018 Aug; 475(16):2577-2592. PubMed ID: 30166494 [TBL] [Abstract][Full Text] [Related]
14. Hexose phosphorylation for a non-enzymatic glycolysis and pentose phosphate pathway on early Earth. Hirakawa Y; Kakegawa T; Furukawa Y Sci Rep; 2024 Jan; 14(1):264. PubMed ID: 38168787 [TBL] [Abstract][Full Text] [Related]
15. Studies on the pigeon red blood cell metabolism. Kalomenopoulou M; Beis I Comp Biochem Physiol B; 1990; 95(4):677-84. PubMed ID: 2344729 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. Tan B; Young DA; Lu ZH; Wang T; Meier TI; Shepard RL; Roth K; Zhai Y; Huss K; Kuo MS; Gillig J; Parthasarathy S; Burkholder TP; Smith MC; Geeganage S; Zhao G J Biol Chem; 2013 Feb; 288(5):3500-11. PubMed ID: 23239881 [TBL] [Abstract][Full Text] [Related]
17. [Features of glycolysis and pentose phosphate pathway in novobiocin sensitive and novobiocin resistant staphylococci]. Vinnikov AI; Babenko IuS Antibiot Khimioter; 1989 Jan; 34(1):34-8. PubMed ID: 2730211 [TBL] [Abstract][Full Text] [Related]
18. Metabolic studies on mycobacteria-I. Demonstration of key enzymes of glycolysis and tricarboxylic acid cycle on polyacrylamide gels. Sharma VD; Katoch VM; Datta AK; Kannan KB; Shivannavar CT; Bharadwaj VP Indian J Lepr; 1985; 57(3):534-41. PubMed ID: 3831090 [TBL] [Abstract][Full Text] [Related]
19. Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. Olson WJ; Martorelli Di Genova B; Gallego-Lopez G; Dawson AR; Stevenson D; Amador-Noguez D; Knoll LJ PLoS Pathog; 2020 Apr; 16(4):e1008432. PubMed ID: 32255806 [TBL] [Abstract][Full Text] [Related]
20. D-xylose fermentation and catabolism in Fusarium oxysporum. Singh A; Kumar PK; Schüger K Biochem Int; 1992 Aug; 27(5):831-9. PubMed ID: 1417916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]