BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21482753)

  • 1. Revealing protein oligomerization and densities in situ using spatial intensity distribution analysis.
    Godin AG; Costantino S; Lorenzo LE; Swift JL; Sergeev M; Ribeiro-da-Silva A; De Koninck Y; Wiseman PW
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7010-5. PubMed ID: 21482753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of receptor tyrosine kinase activation and transactivation by G-protein-coupled receptors using spatial intensity distribution analysis (SpIDA).
    Barbeau A; Godin AG; Swift JL; De Koninck Y; Wiseman PW; Beaulieu JM
    Methods Enzymol; 2013; 522():109-31. PubMed ID: 23374183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial intensity distribution analysis (SpIDA): a new tool for receptor tyrosine kinase activation and transactivation quantification.
    Barbeau A; Swift JL; Godin AG; De Koninck Y; Wiseman PW; Beaulieu JM
    Methods Cell Biol; 2013; 117():1-19. PubMed ID: 24143969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Intensity Distribution Analysis Reveals Abnormal Oligomerization of Proteins in Single Cells.
    Godin AG; Rappaz B; Potvin-Trottier L; Kennedy TE; De Koninck Y; Wiseman PW
    Biophys J; 2015 Aug; 109(4):710-21. PubMed ID: 26287623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of receptor tyrosine kinase transactivation through direct dimerization and surface density measurements in single cells.
    Swift JL; Godin AG; Doré K; Freland L; Bouchard N; Nimmo C; Sergeev M; De Koninck Y; Wiseman PW; Beaulieu JM
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7016-21. PubMed ID: 21482778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Intensity Distribution Analysis: Studies of G Protein-Coupled Receptor Oligomerisation.
    Pediani JD; Ward RJ; Marsango S; Milligan G
    Trends Pharmacol Sci; 2018 Feb; 39(2):175-186. PubMed ID: 29032835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of membrane protein transporter oligomerization in native tissue using spatial fluorescence intensity fluctuation analysis.
    Sergeev M; Godin AG; Kao L; Abuladze N; Wiseman PW; Kurtz I
    PLoS One; 2012; 7(4):e36215. PubMed ID: 22558387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy.
    Costantino S; Comeau JW; Kolin DL; Wiseman PW
    Biophys J; 2005 Aug; 89(2):1251-60. PubMed ID: 15923223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics.
    Kolin DL; Ronis D; Wiseman PW
    Biophys J; 2006 Oct; 91(8):3061-75. PubMed ID: 16861272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis.
    Ward RJ; Pediani JD; Godin AG; Milligan G
    J Biol Chem; 2015 May; 290(20):12844-57. PubMed ID: 25825490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells.
    Fukushima R; Yamamoto J; Ishikawa H; Kinjo M
    Methods; 2018 May; 140-141():161-171. PubMed ID: 29572069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of resting and ligand-bound ErbB1 and ErbB2 receptor tyrosine kinases in living cells using number and brightness analysis.
    Nagy P; Claus J; Jovin TM; Arndt-Jovin DJ
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16524-9. PubMed ID: 20813958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-induced clustering of EGF receptors: a quantitative study by fluorescence image moment analysis.
    Sergeev M; Swift JL; Godin AG; Wiseman PW
    Biophys Chem; 2012 Feb; 161():50-3. PubMed ID: 22178063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of GABA(B) receptor subunit expression and function in the rat spinal cord.
    Sands SA; Purisai MG; Chronwall BM; Enna SJ
    Brain Res; 2003 May; 972(1-2):197-206. PubMed ID: 12711093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isovaline does not activate GABA(B) receptor-coupled potassium currents in GABA(B) expressing AtT-20 cells and cultured rat hippocampal neurons.
    Pitman KA; Borgland SL; MacLeod B; Puil E
    PLoS One; 2015; 10(2):e0118497. PubMed ID: 25706125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Temporal Aggregation Processes Using Spatial Intensity Distribution Analysis.
    Rattray Z; Zindy E; Buzza KM; Pluen A
    Methods Mol Biol; 2019; 2039():141-155. PubMed ID: 31342425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule imaging of fluorescent proteins expressed in living cells.
    Hibino K; Hiroshima M; Takahashi M; Sako Y
    Methods Mol Biol; 2009; 544():451-60. PubMed ID: 19488718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of GFP expression and viability using the tali image-based cytometer.
    Remple K; Stone L
    J Vis Exp; 2011 Nov; (57):. PubMed ID: 22127256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the role of protein folding and assembly in cell-type dependent expression of alpha7 nicotinic receptors using a green fluorescent protein chimera.
    Lee HK; Gwalani L; Mishra V; Anandjiwala P; Sala F; Sala S; Ballesta JJ; O'Malley D; Criado M; Loring RH
    Brain Res; 2009 Mar; 1259():7-16. PubMed ID: 19368825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.