These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21482768)

  • 1. Motor-driven intracellular transport powers bacterial gliding motility.
    Sun M; Wartel M; Cascales E; Shaevitz JW; Mignot T
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7559-64. PubMed ID: 21482768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering the mystery of gliding motility in the myxobacteria.
    Nan B; Zusman DR
    Annu Rev Genet; 2011; 45():21-39. PubMed ID: 21910630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus.
    Islam ST; Mignot T
    Semin Cell Dev Biol; 2015 Oct; 46():143-54. PubMed ID: 26520023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility.
    Balagam R; Litwin DB; Czerwinski F; Sun M; Kaplan HB; Shaevitz JW; Igoshin OA
    PLoS Comput Biol; 2014 May; 10(5):e1003619. PubMed ID: 24810164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that focal adhesion complexes power bacterial gliding motility.
    Mignot T; Shaevitz JW; Hartzell PL; Zusman DR
    Science; 2007 Feb; 315(5813):853-6. PubMed ID: 17289998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of force transmission at bacterial focal adhesion complexes.
    Faure LM; Fiche JB; Espinosa L; Ducret A; Anantharaman V; Luciano J; Lhospice S; Islam ST; Tréguier J; Sotes M; Kuru E; Van Nieuwenhze MS; Brun YV; Théodoly O; Aravind L; Nollmann M; Mignot T
    Nature; 2016 Nov; 539(7630):530-535. PubMed ID: 27749817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The motors powering A-motility in Myxococcus xanthus are distributed along the cell body.
    Sliusarenko O; Zusman DR; Oster G
    J Bacteriol; 2007 Nov; 189(21):7920-1. PubMed ID: 17704221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional intracellular trafficking in bacteria.
    Søgaard-Andersen L
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7283-4. PubMed ID: 21508322
    [No Abstract]   [Full Text] [Related]  

  • 9. Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
    Spormann AM
    Microbiol Mol Biol Rev; 1999 Sep; 63(3):621-41. PubMed ID: 10477310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus.
    Kaimer C; Berleman JE; Zusman DR
    Curr Opin Microbiol; 2012 Dec; 15(6):751-7. PubMed ID: 23142584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The elusive engine in Myxococcus xanthus gliding motility.
    Mignot T
    Cell Mol Life Sci; 2007 Nov; 64(21):2733-45. PubMed ID: 17653507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories.
    Nan B; Bandaria JN; Moghtaderi A; Sun IH; Yildiz A; Zusman DR
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):E1508-13. PubMed ID: 23576734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus.
    Jakobczak B; Keilberg D; Wuichet K; Søgaard-Andersen L
    PLoS Genet; 2015 Jul; 11(7):e1005341. PubMed ID: 26132848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force generation by groups of migrating bacteria.
    Sabass B; Koch MD; Liu G; Stone HA; Shaevitz JW
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7266-7271. PubMed ID: 28655845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA.
    Nan B; Bandaria JN; Guo KY; Fan X; Moghtaderi A; Yildiz A; Zusman DR
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E186-93. PubMed ID: 25550521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus.
    Wartel M; Ducret A; Thutupalli S; Czerwinski F; Le Gall AV; Mauriello EM; Bergam P; Brun YV; Shaevitz J; Mignot T
    PLoS Biol; 2013 Dec; 11(12):e1001728. PubMed ID: 24339744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarity of motility systems in Myxococcus xanthus.
    Mauriello EM; Zusman DR
    Curr Opin Microbiol; 2007 Dec; 10(6):624-9. PubMed ID: 17981496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of myxobacterial A-motility: insights from microcinematographic observations.
    Koch MK; Hoiczyk E
    J Basic Microbiol; 2013 Sep; 53(9):785-91. PubMed ID: 23322594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-force generation is a conserved property of type IV pilus systems.
    Clausen M; Jakovljevic V; Søgaard-Andersen L; Maier B
    J Bacteriol; 2009 Jul; 191(14):4633-8. PubMed ID: 19429611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiology. Bright insight into bacterial gliding.
    Kearns DB
    Science; 2007 Feb; 315(5813):773-4. PubMed ID: 17289965
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.