These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21483044)

  • 1. Switching kinetics of a Cu2S-based gap-type atomic switch.
    Nayak A; Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2011 Jun; 22(23):235201. PubMed ID: 21483044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2011 Jun; 22(25):254013. PubMed ID: 21572189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structures of size-selected single-layered platinum clusters on silicon(111)-7x7 surface at a single cluster level by tunneling spectroscopy.
    Yasumatsu H; Hayakawa T; Kondow T
    J Chem Phys; 2006 Jan; 124(1):14701. PubMed ID: 16409045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the formation process of metal atomic filament for metal sulfide atomic switches by electrical measurement.
    Koizumi R; Aiba A; Kaneko S; Fujii S; Nishino T; Kiguchi M
    Nanotechnology; 2019 Mar; 30(12):125202. PubMed ID: 30620940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparing and regulating a bi-stable molecular switch by atomic manipulation.
    Sakulsermsuk S; Palmer RE; Sloan PA
    J Phys Condens Matter; 2012 Oct; 24(39):394014. PubMed ID: 22964520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch.
    Hino T; Hasegawa T; Tanaka H; Tsuruoka T; Terabe K; Ogawa T; Aono M
    Nanotechnology; 2013 Sep; 24(38):384006. PubMed ID: 23999187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM.
    Lyo IW; Avouris P
    Science; 1991 Jul; 253(5016):173-6. PubMed ID: 17779133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular conductance switch-on of single ruthenium complex molecules.
    Seo K; Konchenko AV; Lee J; Bang GS; Lee H
    J Am Chem Soc; 2008 Feb; 130(8):2553-9. PubMed ID: 18251540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The differential atomic response of the topmost graphene layer on graphite.
    Khara GS; Choi J
    J Phys Condens Matter; 2009 May; 21(19):195402. PubMed ID: 21825480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantized conductance atomic switch.
    Terabe K; Hasegawa T; Nakayama T; Aono M
    Nature; 2005 Jan; 433(7021):47-50. PubMed ID: 15635405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Ag and Cu Filament Formation Inside the Metal Sulfide Layer of an Atomic Switch Based on Point-Contact Spectroscopy.
    Aiba A; Koizumi R; Tsuruoka T; Terabe K; Tsukagoshi K; Kaneko S; Fujii S; Nishino T; Kiguchi M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27178-27182. PubMed ID: 31276618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative differential resistance on the atomic scale: implications for atomic scale devices.
    Lyo IW; Avouris P
    Science; 1989 Sep; 245(4924):1369-71. PubMed ID: 17798744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al
    Woo H; Vishwanath SK; Jeon S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8124-8131. PubMed ID: 29441789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope.
    Park JB; Jaeckel B; Parkinson BA
    Langmuir; 2006 Jun; 22(12):5334-40. PubMed ID: 16732661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy.
    Vang RT; Laegsgaard E; Besenbacher F
    Phys Chem Chem Phys; 2007 Jul; 9(27):3460-9. PubMed ID: 17612714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.
    Albers BJ; Liebmann M; Schwendemann TC; Baykara MZ; Heyde M; Salmeron M; Altman EI; Schwarz UD
    Rev Sci Instrum; 2008 Mar; 79(3):033704. PubMed ID: 18377012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local chemical reaction of benzene on Cu110 via STM-induced excitation.
    Komeda T; Kim Y; Fujita Y; Sainoo Y; Kawai M
    J Chem Phys; 2004 Mar; 120(11):5347-52. PubMed ID: 15267408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte gating in redox-active tunneling junctions--an electrochemical STM approach.
    Pobelov IV; Li Z; Wandlowski T
    J Am Chem Soc; 2008 Nov; 130(47):16045-54. PubMed ID: 18975950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistive switching induced by metallic filaments formation through poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate).
    Wang Z; Zeng F; Yang J; Chen C; Pan F
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):447-53. PubMed ID: 22201222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.