These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21483052)

  • 1. Optical coherence and collective phenomena in nanostructures.
    Littlewood PB; Marchetti FM; Szymańska MH
    J Phys Condens Matter; 2007 Jul; 19(29):290301. PubMed ID: 21483052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Bose coherence of excitons and polaritons.
    Snoke D
    Science; 2002 Nov; 298(5597):1368-72. PubMed ID: 12434051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers.
    Ghosh S; Wang WH; Mendoza FM; Myers RC; Li X; Samarth N; Gossard AC; Awschalom DD
    Nat Mater; 2006 Apr; 5(4):261-4. PubMed ID: 16565713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of interface disorder on quantum well excitons and microcavity polaritons.
    Savona V
    J Phys Condens Matter; 2007 Jul; 19(29):295208. PubMed ID: 21483060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors.
    Awschalom DD; Bassett LC; Dzurak AS; Hu EL; Petta JR
    Science; 2013 Mar; 339(6124):1174-9. PubMed ID: 23471400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in multi-dimensional coherent spectroscopy of semiconductor nanostructures.
    Moody G; Cundiff ST
    Adv Phys X; 2017; 2(3):641-674. PubMed ID: 28894306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bose-Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity.
    Berman OL; Kezerashvili RY; Lozovik YE; Snoke DW
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5459-82. PubMed ID: 21041225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing interband coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy.
    Velizhanin KA; Piryatinski A
    J Phys Chem B; 2011 May; 115(18):5372-82. PubMed ID: 21391697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum coherence in an optical modulator.
    Carter SG; Birkedal V; Wang CS; Coldren LA; Maslov AV; Citrin DS; Sherwin MS
    Science; 2005 Oct; 310(5748):651-3. PubMed ID: 16254182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum phase transition in a single-molecule quantum dot.
    Roch N; Florens S; Bouchiat V; Wernsdorfer W; Balestro F
    Nature; 2008 May; 453(7195):633-7. PubMed ID: 18509439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures.
    Zhang Q; Atay T; Tischler JR; Bradley MS; Bulović V; Nurmikko AV
    Nat Nanotechnol; 2007 Sep; 2(9):555-9. PubMed ID: 18654367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.
    Paul J; Stevens CE; Liu C; Dey P; McIntyre C; Turkowski V; Reno JL; Hilton DJ; Karaiskaj D
    Phys Rev Lett; 2016 Apr; 116(15):157401. PubMed ID: 27127985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.