These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 21483478)
1. CAERUS: predicting CAncER oUtcomeS using relationship between protein structural information, protein networks, gene expression data, and mutation data. Zhang KX; Ouellette BF PLoS Comput Biol; 2011 Mar; 7(3):e1001114. PubMed ID: 21483478 [TBL] [Abstract][Full Text] [Related]
2. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432 [TBL] [Abstract][Full Text] [Related]
4. Combining Algorithms to Find Signatures That Predict Risk in Early-Stage Stomach Cancer. Nation JB; Cabot-Miller J; Segal O; Lucito R; Adaricheva K J Comput Biol; 2021 Oct; 28(10):985-1006. PubMed ID: 34582702 [No Abstract] [Full Text] [Related]
5. Topologically inferring pathway activity for precise survival outcome prediction: breast cancer as a case. Liu W; Wang W; Tian G; Xie W; Lei L; Liu J; Huang W; Xu L; Li E Mol Biosyst; 2017 Feb; 13(3):537-548. PubMed ID: 28098303 [TBL] [Abstract][Full Text] [Related]
6. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server. Han H; Lehner B; Lee I Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989 [TBL] [Abstract][Full Text] [Related]
7. Proteomics of mouse BRCA1-deficient mammary tumors identifies DNA repair proteins with potential diagnostic and prognostic value in human breast cancer. Warmoes M; Jaspers JE; Pham TV; Piersma SR; Oudgenoeg G; Massink MP; Waisfisz Q; Rottenberg S; Boven E; Jonkers J; Jimenez CR Mol Cell Proteomics; 2012 Jul; 11(7):M111.013334. PubMed ID: 22366898 [TBL] [Abstract][Full Text] [Related]
8. A favorable role of prolactin in human breast cancer reveals novel pathway-based gene signatures indicative of tumor differentiation and favorable patient outcome. Hachim IY; Shams A; Lebrun JJ; Ali S Hum Pathol; 2016 Jul; 53():142-52. PubMed ID: 26980025 [TBL] [Abstract][Full Text] [Related]
9. A novel method for generation of signature networks as biomarkers from complex high throughput data. Nikolsky Y; Ekins S; Nikolskaya T; Bugrim A Toxicol Lett; 2005 Jul; 158(1):20-9. PubMed ID: 15871913 [TBL] [Abstract][Full Text] [Related]
10. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery. Koh HWL; Fermin D; Vogel C; Choi KP; Ewing RM; Choi H NPJ Syst Biol Appl; 2019; 5():22. PubMed ID: 31312515 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of breast cancer cell lines through multiple omic approaches. Smith SE; Mellor P; Ward AK; Kendall S; McDonald M; Vizeacoumar FS; Vizeacoumar FJ; Napper S; Anderson DH Breast Cancer Res; 2017 Jun; 19(1):65. PubMed ID: 28583138 [TBL] [Abstract][Full Text] [Related]
12. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition. Mak MP; Tong P; Diao L; Cardnell RJ; Gibbons DL; William WN; Skoulidis F; Parra ER; Rodriguez-Canales J; Wistuba II; Heymach JV; Weinstein JN; Coombes KR; Wang J; Byers LA Clin Cancer Res; 2016 Feb; 22(3):609-20. PubMed ID: 26420858 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures. Li Y; Sahni N; Yi S Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983 [TBL] [Abstract][Full Text] [Related]
14. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network. Khunlertgit N; Yoon BJ BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944 [TBL] [Abstract][Full Text] [Related]
15. An Integrated Systems Biology and Network-Based Approaches to Identify Novel Biomarkers in Breast Cancer Cell Lines Using Gene Expression Data. Khan A; Rehman Z; Hashmi HF; Khan AA; Junaid M; Sayaf AM; Ali SS; Hassan FU; Heng W; Wei DQ Interdiscip Sci; 2020 Jun; 12(2):155-168. PubMed ID: 32056139 [TBL] [Abstract][Full Text] [Related]
16. Predicting response to preoperative chemotherapy agents by identifying drug action on modeled microRNA regulation networks. Zhu L; Liu J; Liang F; Rayner S; Xiong J PLoS One; 2014; 9(5):e98140. PubMed ID: 24848634 [TBL] [Abstract][Full Text] [Related]
17. Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Tanioka M; Fan C; Parker JS; Hoadley KA; Hu Z; Li Y; Hyslop TM; Pitcher BN; Soloway MG; Spears PA; Henry LN; Tolaney S; Dang CT; Krop IE; Harris LN; Berry DA; Mardis ER; Winer EP; Hudis CA; Carey LA; Perou CM Clin Cancer Res; 2018 Nov; 24(21):5292-5304. PubMed ID: 30037817 [No Abstract] [Full Text] [Related]
18. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer. Naorem LD; Muthaiyan M; Venkatesan A J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816 [TBL] [Abstract][Full Text] [Related]
19. NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis. Wu L; Liu Z; Xu J; Chen M; Fang H; Tong W; Xiao W Biomark Med; 2015; 9(11):1053-65. PubMed ID: 26501477 [TBL] [Abstract][Full Text] [Related]
20. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency. Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]