BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21483614)

  • 1. Deep UV resonant Raman spectroscopy for photodamage characterization in cells.
    Kumamoto Y; Taguchi A; Smith NI; Kawata S
    Biomed Opt Express; 2011 Mar; 2(4):927-36. PubMed ID: 21483614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiwavelength Raman Spectroscopic Analysis of Superficial Iron-Chromium Oxides Generated Using Laser Irradiation.
    Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I
    Appl Spectrosc; 2018 Jun; 72(6):879-885. PubMed ID: 29381100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Ultraviolet and Helicity-Dependent Raman Spectroscopy for Carbon Nanotubes and 2D Materials.
    Saito R; Hung NT; Yang T; Huang J; Liu HL; Gulo DP; Han S; Tong L
    Small; 2024 Feb; ():e2308558. PubMed ID: 38412418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodium nanocubes and nanotripods for highly sensitive ultraviolet surface-enhanced Raman spectroscopy.
    Das R; Soni RK
    Analyst; 2018 May; 143(10):2310-2322. PubMed ID: 29687108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.
    Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T
    Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Feb; 78(2):227-242. PubMed ID: 38204400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cell and the Sum of Its Parts: Patterns of Complexity in Biosignatures as Revealed by Deep UV Raman Spectroscopy.
    Sapers HM; Razzell Hollis J; Bhartia R; Beegle LW; Orphan VJ; Amend JP
    Front Microbiol; 2019; 10():679. PubMed ID: 31156562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep ultraviolet resonant Raman imaging of a cell.
    Kumamoto Y; Taguchi A; Smith NI; Kawata S
    J Biomed Opt; 2012 Jul; 17(7):076001. PubMed ID: 22894484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-ultraviolet Raman microspectroscopy: characterization of wide-gap semiconductors.
    Nakashima S; Okumura H; Yamamoto T; Shimidzu R
    Appl Spectrosc; 2004 Feb; 58(2):224-9. PubMed ID: 17140482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure determination in proteins from deep (192-223-nm) ultraviolet Raman spectroscopy.
    Copeland RA; Spiro TG
    Biochemistry; 1987 Apr; 26(8):2134-9. PubMed ID: 3620443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet resonant Raman spectroscopy of nucleic acid components.
    Blazej DC; Peticolas WL
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2639-43. PubMed ID: 268615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation.
    Sato H; Chiba H; Tashiro H; Ozaki Y
    J Biomed Opt; 2001 Jul; 6(3):366-70. PubMed ID: 11516329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet resonance Raman spectra of insulin and alpha-lactalbumin with 218- and 200-nm laser excitation.
    Rava RP; Spiro TG
    Biochemistry; 1985 Apr; 24(8):1861-5. PubMed ID: 3893540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts.
    Tian H; Wachs IE; Briand LE
    J Phys Chem B; 2005 Dec; 109(49):23491-9. PubMed ID: 16375323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol.
    Cen Q; He Y; Xu M; Wang J; Wang Z
    J Chem Phys; 2015 Mar; 142(11):114201. PubMed ID: 25796242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of the SHERLOC Deep Ultraviolet Fluorescence-Raman Spectrometer on the
    Uckert K; Bhartia R; Beegle LW; Monacelli B; Asher SA; Burton AS; Bykov SV; Davis K; Fries MD; Jakubek RS; Hollis JR; Roppel RD; Wu YH
    Appl Spectrosc; 2021 Jul; 75(7):763-773. PubMed ID: 33876994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies.
    Wu Z; Kim HS; Stair PC; Rugmini S; Jackson SD
    J Phys Chem B; 2005 Feb; 109(7):2793-800. PubMed ID: 16851289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the Elusive Framework Niobium in NbS-1 Zeolite by UV Resonance Raman Spectroscopy.
    Chen Y; Wang X; Zhang L
    Chemphyschem; 2017 Dec; 18(23):3325-3328. PubMed ID: 28913980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon spectra of pure and acceptor doped BaZrO
    Mazzei L; Rukser D; Biebl F; Grimm-Lebsanft B; Neuber G; Pergolesi D; Börjesson L; Rübhausen MA; Andreasson J; Karlsson M
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32628643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.