These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21483614)

  • 61. Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet light.
    Barron BC; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):815-21. PubMed ID: 3570691
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Maturation grade of coals as revealed by Raman spectroscopy: progress and problems.
    Quirico E; Rouzaud JN; Bonal L; Montagnac G
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2368-77. PubMed ID: 16029859
    [TBL] [Abstract][Full Text] [Related]  

  • 63. UV Raman spectroscopy of hydrocarbons.
    Loppnow GR; Shoute L; Schmidt KJ; Savage A; Hall RH; Bulmer JT
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2461-76. PubMed ID: 15482987
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New Aspects Concerning the Ampicillin Photodegradation.
    Cercel R; Paraschiv M; Florica CS; Daescu M; Udrescu A; Ciobanu RC; Schreiner C; Baibarac M
    Pharmaceuticals (Basel); 2022 Mar; 15(4):. PubMed ID: 35455412
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia.
    Mo J; Zheng W; Low JJ; Ng J; Ilancheran A; Huang Z
    Anal Chem; 2009 Nov; 81(21):8908-15. PubMed ID: 19817391
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Studies of bovine enterovirus structure by ultraviolet resonance Raman spectroscopy.
    Kaminaka S; Imamura Y; Shingu M; Kitagawa T; Toyoda T
    J Virol Methods; 1999 Feb; 77(2):117-23. PubMed ID: 10092135
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Asbestos mineral analysis by UV Raman and energy-dispersive X-ray spectroscopy.
    Petry R; Mastalerz R; Zahn S; Mayerhöfer TG; Völksch G; Viereck-Götte L; Kreher-Hartmann B; Holz L; Lankers M; Popp J
    Chemphyschem; 2006 Feb; 7(2):414-20. PubMed ID: 16389599
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light.
    Nelson WH; Dasari R; Feld M; Sperry JF
    Appl Spectrosc; 2004 Dec; 58(12):1408-12. PubMed ID: 15606952
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using water Raman intensities to determine the effective excitation and emission path lengths of fluorophotometers for correcting fluorescence inner filter effect.
    Nettles CB; Hu J; Zhang D
    Anal Chem; 2015; 87(9):4917-24. PubMed ID: 25864855
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm.
    Popov M; Churkin V; Kirichenko A; Denisov V; Ovsyannikov D; Kulnitskiy B; Perezhogin I; Aksenenkov V; Blank V
    Nanoscale Res Lett; 2017 Oct; 12(1):561. PubMed ID: 29019049
    [TBL] [Abstract][Full Text] [Related]  

  • 71. UV resonance Raman spectroscopy of DNA and protein constituents of viruses: assignments and cross sections for excitations at 257, 244, 238, and 229 nm.
    Wen ZQ; Thomas GJ
    Biopolymers; 1998 Mar; 45(3):247-56. PubMed ID: 9465787
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Resonance Raman spectroscopy of optically trapped functional erythrocytes.
    Ramser K; Logg K; Goksör M; Enger J; Käll M; Hanstorp D
    J Biomed Opt; 2004; 9(3):593-600. PubMed ID: 15189098
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Raman and infrared spectroscopy of the manganese arsenate mineral allactite.
    Frost RL; Weier M
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):623-7. PubMed ID: 16503187
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites.
    Tsuda H; Arends J
    J Dent Res; 1994 Nov; 73(11):1703-10. PubMed ID: 7983256
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy.
    Oshima Y; Shinzawa H; Takenaka T; Furihata C; Sato H
    J Biomed Opt; 2010; 15(1):017009. PubMed ID: 20210483
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.
    Mondal S; Puranik M
    Phys Chem Chem Phys; 2016 May; 18(20):13874-87. PubMed ID: 27146198
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate.
    Mei G; Mamaeva N; Ganapathy S; Wang P; DeGrip WJ; Rothschild KJ
    PLoS One; 2018; 13(12):e0209506. PubMed ID: 30586409
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Surface-enhanced Raman scattering of 4-aminobenzenethiol in Ag sol: relative intensity of a1- and b2-type bands invariant against aggregation of Ag nanoparticles.
    Kim K; Yoon JK; Lee HB; Shin D; Shin KS
    Langmuir; 2011 Apr; 27(8):4526-31. PubMed ID: 21405076
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Note: deep ultraviolet Raman spectrograph with the laser excitation line down to 177.3 nm and its application.
    Jin S; Fan F; Guo M; Zhang Y; Feng Z; Li C
    Rev Sci Instrum; 2014 Apr; 85(4):046105. PubMed ID: 24784683
    [TBL] [Abstract][Full Text] [Related]  

  • 80. UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics.
    Asamoto DK; Kim JE
    Methods Mol Biol; 2019; 2003():327-349. PubMed ID: 31218624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.