BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21483620)

  • 21. Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy.
    Girshovitz P; Shaked NT
    Opt Express; 2013 Mar; 21(5):5701-14. PubMed ID: 23482143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-shot x-ray phase imaging with grating interferometry and photon-counting detectors.
    Wang Z; Gao K; Wang D; Wu Z; Chen H; Wang S; Wu Z
    Opt Lett; 2014 Feb; 39(4):877-9. PubMed ID: 24562230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Shot Imaging of Two-Wavelength Spatial Phase-Shifting Interferometry.
    Jeon JW; Joo KN
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hilbert phase microscopy based on pseudo thermal illumination in the Linnik configuration.
    Rogalski M; Cywińska M; Ahmad A; Patorski K; Micó V; Ahluwalia BS; Trusiak M
    Opt Lett; 2022 Nov; 47(22):5793-5796. PubMed ID: 37219105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-shot full-field reflection phase microscopy.
    Yaqoob Z; Yamauchi T; Choi W; Fu D; Dasari RR; Feld MS
    Opt Express; 2011 Apr; 19(8):7587-95. PubMed ID: 21503067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative phase imaging by wide-field interferometry with variable shearing distance uncoupled from the off-axis angle.
    Guo R; Mirsky SK; Barnea I; Dudaie M; Shaked NT
    Opt Express; 2020 Feb; 28(4):5617-5628. PubMed ID: 32121778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative phase imaging of cells in a flow cytometry arrangement utilizing Michelson interferometer-based off-axis digital holographic microscopy.
    Min J; Yao B; Trendafilova V; Ketelhut S; Kastl L; Greve B; Kemper B
    J Biophotonics; 2019 Sep; 12(9):e201900085. PubMed ID: 31169960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Off-axis interferometer with adjustable fringe contrast based on polarization encoding.
    Karepov S; Shaked NT; Ellenbogen T
    Opt Lett; 2015 May; 40(10):2273-6. PubMed ID: 26393717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Off-axis digital holographic microscopy with LED illumination based on polarization filtering.
    Guo R; Yao B; Gao P; Min J; Zhou M; Han J; Yu X; Yu X; Lei M; Yan S; Yang Y; Dan D; Ye T
    Appl Opt; 2013 Dec; 52(34):8233-8. PubMed ID: 24513823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach.
    Fredenberg E; Danielsson M; Stayman JW; Siewerdsen JH; Aslund M
    Med Phys; 2012 Sep; 39(9):5317-35. PubMed ID: 22957600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution single-shot phase-shifting interference microscopy using deep neural network for quantitative phase imaging of biological samples.
    Bhatt S; Butola A; Kanade SR; Kumar A; Mehta DS
    J Biophotonics; 2021 Jul; 14(7):e202000473. PubMed ID: 33913255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sampling moiré method: a tool for sensing quadratic phase distortion and its correction for accurate quantitative phase microscopy.
    Jayakumar N; Ahmad A; Mehta DS; Ahluwalia BS
    Opt Express; 2020 Mar; 28(7):10062-10077. PubMed ID: 32225600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-wavelength phase retrieval method from simultaneous multi-wavelength in-line phase-shifting interferograms.
    Fei L; Lu X; Wang H; Zhang W; Tian J; Zhong L
    Opt Express; 2014 Dec; 22(25):30910-23. PubMed ID: 25607040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Algorithm for reconstructing wide space-bandwidth information in parallel two-step phase-shifting digital holography.
    Tahara T; Shimozato Y; Xia P; Ito Y; Awatsuji Y; Nishio K; Ura S; Matoba O; Kubota T
    Opt Express; 2012 Aug; 20(18):19806-14. PubMed ID: 23037033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative DIC microscopy using an off-axis self-interference approach.
    Fu D; Oh S; Choi W; Yamauchi T; Dorn A; Yaqoob Z; Dasari RR; Feld MS
    Opt Lett; 2010 Jul; 35(14):2370-2. PubMed ID: 20634833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase recovery method in digital holographic interferometry using high-resolution signal parameter estimation.
    Vishnoi A; Ramaiah J; Rajshekhar G
    Appl Opt; 2019 Feb; 58(6):1485-1490. PubMed ID: 30874034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters.
    Gao P; Yao B; Min J; Guo R; Zheng J; Ye T; Harder I; Nercissian V; Mantel K
    Opt Express; 2011 Jan; 19(3):1930-5. PubMed ID: 21369008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative cell imaging using single beam phase retrieval method.
    Anand A; Chhaniwal V; Javidi B
    J Biomed Opt; 2011 Jun; 16(6):060503. PubMed ID: 21721797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-image phase retrieval for hard X-ray grating interferometry.
    Wang Z; Ren K; Shi X; Ren Y; Gao K; Wu Z
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):215-219. PubMed ID: 30655487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.
    Yang Y; Tang X
    Med Phys; 2012 Dec; 39(12):7237-53. PubMed ID: 23231275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.