These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21483659)

  • 21. Low cost microfluidic device based on cotton threads for electroanalytical application.
    Agustini D; Bergamini MF; Marcolino-Junior LH
    Lab Chip; 2016 Jan; 16(2):345-52. PubMed ID: 26659997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Smart salt-responsive thread for highly sensitive microfluidic glucose detection in sweat.
    Wu L; Xiong J; Xiao G; Ju J; Sun W; Wang W; Ma Y; Ran R; Qiao Y; Li C; Yu L; Lu Z
    Lab Chip; 2024 Feb; 24(4):776-786. PubMed ID: 38197467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.
    Nilghaz A; Zhang L; Li M; Ballerini DR; Shen W
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22209-15. PubMed ID: 25399507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic cloth-based analytical devices: Emerging technologies and applications.
    Zhang C; Su Y; Liang Y; Lai W
    Biosens Bioelectron; 2020 Nov; 168():112391. PubMed ID: 32862091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic glucose sensor incorporating a novel thread-based electrode system.
    Gaines M; Gonzalez-Guerrero MJ; Uchida K; Gomez FA
    Electrophoresis; 2018 Aug; 39(16):2131-2135. PubMed ID: 29714041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous electrochemical biosensing of glial fibrillary acidic protein for point-of-care detection of central nervous system injuries.
    Salahandish R; Hassani M; Zare A; Haghayegh F; Sanati-Nezhad A
    Lab Chip; 2022 Apr; 22(8):1542-1555. PubMed ID: 35297932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paper-based assays for urine analysis.
    Lepowsky E; Ghaderinezhad F; Knowlton S; Tasoglu S
    Biomicrofluidics; 2017 Sep; 11(5):051501. PubMed ID: 29104709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors.
    Modha S; Castro C; Tsutsui H
    Biosens Bioelectron; 2021 Apr; 178():113026. PubMed ID: 33545552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in thread-based microfluidics for diagnostic applications.
    Weng X; Kang Y; Guo Q; Peng B; Jiang H
    Biosens Bioelectron; 2019 May; 132():171-185. PubMed ID: 30875629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thread- paper, and fabric enzyme-linked immunosorbent assays (ELISA).
    Gonzalez A; Gaines M; Gallegos LY; Guevara R; Gomez FA
    Methods; 2018 Aug; 146():58-65. PubMed ID: 29438831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constructing Silk Fibroin-Based Three-Dimensional Microfluidic Devices
    Zhou M; Shi X; Li X; Xiao G; Liang L; Ju J; Wang F; Xia Q; Sun W; Qiao Y; Yu L; Lu Z
    ACS Appl Bio Mater; 2021 Nov; 4(11):8039-8048. PubMed ID: 35006785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics.
    Asci Erkocyigit B; Ozufuklar O; Yardim A; Guler Celik E; Timur S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel and highly stable strategy for the development of microfluidic enzymatic assays based on the immobilization of horseradish peroxidase (HRP) into cotton threads.
    Fedalto L; de Oliveira PR; Agustini D; Kalinke C; Banks CE; Bergamini MF; Marcolino-Junior LH
    Talanta; 2023 Jan; 252():123889. PubMed ID: 36070669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coating of Conducting and Insulating Threads with Porous MOF Particles through Langmuir-Blodgett Technique.
    Rauf S; Andrés MA; Roubeau O; Gascón I; Serre C; Eddaoudi M; Salama KN
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33435145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A siphonage flow and thread-based low-cost platform enables quantitative and sensitive assays.
    Lu F; Mao Q; Wu R; Zhang S; Du J; Lv J
    Lab Chip; 2015 Jan; 15(2):495-503. PubMed ID: 25406338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metering the capillary-driven flow of fluids in paper-based microfluidic devices.
    Noh H; Phillips ST
    Anal Chem; 2010 May; 82(10):4181-7. PubMed ID: 20411969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.