BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21483662)

  • 1. Extensional flow of blood analog solutions in microfluidic devices.
    Sousa PC; Pinho FT; Oliveira MS; Alves MA
    Biomicrofluidics; 2011 Mar; 5(1):14108. PubMed ID: 21483662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
    Sharma V; Haward SJ; Serdy J; Keshavarz B; Soderlund A; Threlfall-Holmes P; McKinley GH
    Soft Matter; 2015 Apr; 11(16):3251-70. PubMed ID: 25782987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions.
    Dinic J; Zhang Y; Jimenez LN; Sharma V
    ACS Macro Lett; 2015 Jul; 4(7):804-808. PubMed ID: 35596480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear and extensional rheology of commercial thickeners used for dysphagia management.
    Waqas MQ; Wiklund J; Altskär A; Ekberg O; Stading M
    J Texture Stud; 2017 Dec; 48(6):507-517. PubMed ID: 28464563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions.
    Martín-Alfonso JE; Cuadri AA; Berta M; Stading M
    Carbohydr Polym; 2018 Feb; 181():63-70. PubMed ID: 29254016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic instabilities in the electroosmotic flow of non-Newtonian fluids through T-shaped microchannels.
    Song L; Yu L; Li D; Jagdale PP; Xuan X
    Electrophoresis; 2020 Apr; 41(7-8):588-597. PubMed ID: 31786811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid.
    Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P
    J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoarthritic synovial fluid and correlations with protein concentration.
    Madkhali A; Chernos M; Fakhraei S; Grecov D; Kwok E
    Biorheology; 2016 Nov; 53(3-4):123-136. PubMed ID: 27767961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic rheology of methylcellulose solutions in hyperbolic contractions and the effect of salt in shear and extensional flows.
    Micklavzina BL; Metaxas AE; Dutcher CS
    Soft Matter; 2020 Jun; 16(22):5273-5281. PubMed ID: 32459238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions.
    Sousa PC; Vega EJ; Sousa RG; Montanero JM; Alves MA
    Rheol Acta; 2017; 56(1):11-20. PubMed ID: 32355366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear and extensional rheology of cellulose/ionic liquid solutions.
    Haward SJ; Sharma V; Butts CP; McKinley GH; Rahatekar SS
    Biomacromolecules; 2012 May; 13(5):1688-99. PubMed ID: 22480203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrumental characteristics from extensional rheology and tribology of polysaccharide solutions.
    Funami T; Nakauma M
    J Texture Stud; 2021 Dec; 52(5-6):567-577. PubMed ID: 34605034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.
    Walker AM; Johnston CR; Rival DE
    J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-controlled dripping-onto-substrate (DoS) extensional rheometry of polymer micelle solutions.
    Zhang DY; Calabrese MA
    Soft Matter; 2022 May; 18(20):3993-4008. PubMed ID: 35552577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER).
    Szopinski D; Handge UA; Kulicke WM; Abetz V; Luinstra GA
    Carbohydr Polym; 2016 Jan; 136():834-40. PubMed ID: 26572419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow of non-Newtonian fluids in a constriction microchannel.
    Ko CH; Li D; Malekanfard A; Wang YN; Fu LM; Xuan X
    Electrophoresis; 2019 May; 40(10):1387-1394. PubMed ID: 30346029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: effects of surfactant concentration and ionic environment.
    Haward SJ; McKinley GH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031502. PubMed ID: 22587098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis.
    Walker AM; Johnston CR; Rival DE
    Ann Biomed Eng; 2014 Jan; 42(1):97-109. PubMed ID: 23975383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.