These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21483717)

  • 1. Trypanosoma brucei glycogen synthase kinase-3, a target for anti-trypanosomal drug development: a public-private partnership to identify novel leads.
    Oduor RO; Ojo KK; Williams GP; Bertelli F; Mills J; Maes L; Pryde DC; Parkinson T; Van Voorhis WC; Holler TP
    PLoS Negl Trop Dis; 2011 Apr; 5(4):e1017. PubMed ID: 21483717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3.
    Ojo KK; Arakaki TL; Napuli AJ; Inampudi KK; Keyloun KR; Zhang L; Hol WG; Verlinde CL; Merritt EA; Van Voorhis WC
    Mol Biochem Parasitol; 2011 Apr; 176(2):98-108. PubMed ID: 21195115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Four-Point Screening Method for Assessing Molecular Mechanism of Action (MMOA) Identifies Tideglusib as a Time-Dependent Inhibitor of Trypanosoma brucei GSK3β.
    Swinney ZT; Haubrich BA; Xia S; Ramesha C; Gomez SR; Guyett P; Mensa-Wilmot K; Swinney DC
    PLoS Negl Trop Dis; 2016 Mar; 10(3):e0004506. PubMed ID: 26942720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.
    Pizarro JC; Hills T; Senisterra G; Wernimont AK; Mackenzie C; Norcross NR; Ferguson MA; Wyatt PG; Gilbert IH; Hui R
    PLoS Negl Trop Dis; 2013; 7(10):e2492. PubMed ID: 24147171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From on-target to off-target activity: identification and optimisation of Trypanosoma brucei GSK3 inhibitors and their characterisation as anti-Trypanosoma brucei drug discovery lead molecules.
    Woodland A; Grimaldi R; Luksch T; Cleghorn LA; Ojo KK; Van Voorhis WC; Brenk R; Frearson JA; Gilbert IH; Wyatt PG
    ChemMedChem; 2013 Jul; 8(7):1127-37. PubMed ID: 23776181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiro-containing derivatives show antiparasitic activity against Trypanosoma brucei through inhibition of the trypanothione reductase enzyme.
    Turcano L; Battista T; De Haro ET; Missineo A; Alli C; Paonessa G; Colotti G; Harper S; Fiorillo A; Ilari A; Bresciani A
    PLoS Negl Trop Dis; 2020 May; 14(5):e0008339. PubMed ID: 32437349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs.
    Bell AS; Mills JE; Williams GP; Brannigan JA; Wilkinson AJ; Parkinson T; Leatherbarrow RJ; Tate EW; Holder AA; Smith DF
    PLoS Negl Trop Dis; 2012; 6(4):e1625. PubMed ID: 22545171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy.
    Ojo KK; Gillespie JR; Riechers AJ; Napuli AJ; Verlinde CL; Buckner FS; Gelb MH; Domostoj MM; Wells SJ; Scheer A; Wells TN; Van Voorhis WC
    Antimicrob Agents Chemother; 2008 Oct; 52(10):3710-7. PubMed ID: 18644955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.
    Koh CY; Kim JE; Wetzel AB; de van der Schueren WJ; Shibata S; Ranade RM; Liu J; Zhang Z; Gillespie JR; Buckner FS; Verlinde CL; Fan E; Hol WG
    PLoS Negl Trop Dis; 2014 Apr; 8(4):e2775. PubMed ID: 24743796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of N-(3-sulfamoylphenyl)amides as Trypanosoma brucei leucyl-tRNA synthetase inhibitors.
    Li Z; Xin W; Wang Q; Zhu M; Zhou H
    Eur J Med Chem; 2021 May; 217():113319. PubMed ID: 33725631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The design and synthesis of potent and selective inhibitors of Trypanosoma brucei glycogen synthase kinase 3 for the treatment of human african trypanosomiasis.
    Urich R; Grimaldi R; Luksch T; Frearson JA; Brenk R; Wyatt PG
    J Med Chem; 2014 Sep; 57(18):7536-49. PubMed ID: 25198388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirubin Analogues Inhibit
    Efstathiou A; Gaboriaud-Kolar N; Myrianthopoulos V; Vougogiannopoulou K; Subota I; Aicher S; Mikros E; Bastin P; Skaltsounis AL; Soteriadou K; Smirlis D
    Antimicrob Agents Chemother; 2019 Jun; 63(6):. PubMed ID: 30910902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of α-phenoxy-N-sulfonylphenyl acetamides as Trypanosoma brucei Leucyl-tRNA synthetase inhibitors.
    Xin W; Li Z; Wang Q; Du J; Zhu M; Zhou H
    Eur J Med Chem; 2020 Jan; 185():111827. PubMed ID: 31732256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity.
    Sharlow ER; Lyda TA; Dodson HC; Mustata G; Morris MT; Leimgruber SS; Lee KH; Kashiwada Y; Close D; Lazo JS; Morris JC
    PLoS Negl Trop Dis; 2010 Apr; 4(4):e659. PubMed ID: 20405000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Small-Molecule Trypanosoma brucei N-Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode.
    Spinks D; Smith V; Thompson S; Robinson DA; Luksch T; Smith A; Torrie LS; McElroy S; Stojanovski L; Norval S; Collie IT; Hallyburton I; Rao B; Brand S; Brenk R; Frearson JA; Read KD; Wyatt PG; Gilbert IH
    ChemMedChem; 2015 Nov; 10(11):1821-36. PubMed ID: 26395087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase.
    Khabnadideh S; Pez D; Musso A; Brun R; Pérez LM; González-Pacanowska D; Gilbert IH
    Bioorg Med Chem; 2005 Apr; 13(7):2637-49. PubMed ID: 15755663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing.
    Diaz-Gonzalez R; Kuhlmann FM; Galan-Rodriguez C; Madeira da Silva L; Saldivia M; Karver CE; Rodriguez A; Beverley SM; Navarro M; Pollastri MP
    PLoS Negl Trop Dis; 2011 Aug; 5(8):e1297. PubMed ID: 21886855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.
    Abdeen S; Salim N; Mammadova N; Summers CM; Goldsmith-Pestana K; McMahon-Pratt D; Schultz PG; Horwich AL; Chapman E; Johnson SM
    Bioorg Med Chem Lett; 2016 Nov; 26(21):5247-5253. PubMed ID: 27720295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment-Based Discovery of Non-bisphosphonate Binders of Trypanosoma brucei Farnesyl Pyrophosphate Synthase.
    Münzker L; Petrick JK; Schleberger C; Clavel D; Cornaciu I; Wilcken R; Márquez JA; Klebe G; Marzinzik A; Jahnke W
    Chembiochem; 2020 Nov; 21(21):3096-3111. PubMed ID: 32537808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids.
    Benítez D; Medeiros A; Fiestas L; Panozzo-Zenere EA; Maiwald F; Prousis KC; Roussaki M; Calogeropoulou T; Detsi A; Jaeger T; Šarlauskas J; Peterlin Mašič L; Kunick C; Labadie GR; Flohé L; Comini MA
    PLoS Negl Trop Dis; 2016 Apr; 10(4):e0004617. PubMed ID: 27070550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.