BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 21483722)

  • 21. PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1.
    Mao J; Chi W; Ouyang M; He B; Chen F; Zhang L
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4152-7. PubMed ID: 25775508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana.
    Koumoto Y; Shimada T; Kondo M; Hara-Nishimura I; Nishimura M
    J Biol Chem; 2001 Aug; 276(32):29688-94. PubMed ID: 11402030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein.
    Weaver J; Rye HS
    J Biol Chem; 2014 Aug; 289(33):23219-23232. PubMed ID: 24970895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional consequences of single:double ring transitions in chaperonins: life in the cold.
    Ferrer M; Lünsdorf H; Chernikova TN; Yakimov M; Timmis KN; Golyshin PN
    Mol Microbiol; 2004 Jul; 53(1):167-82. PubMed ID: 15225312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin.
    Bonshtien AL; Weiss C; Vitlin A; Niv A; Lorimer GH; Azem A
    J Biol Chem; 2007 Feb; 282(7):4463-4469. PubMed ID: 17178727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
    Betancourt MR; Thirumalai D
    J Mol Biol; 1999 Apr; 287(3):627-44. PubMed ID: 10092464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer.
    Nishio K; Hirohashi T; Nakai M
    Biochem Biophys Res Commun; 1999 Dec; 266(2):584-7. PubMed ID: 10600546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant RuBisCo assembly in
    Aigner H; Wilson RH; Bracher A; Calisse L; Bhat JY; Hartl FU; Hayer-Hartl M
    Science; 2017 Dec; 358(6368):1272-1278. PubMed ID: 29217567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins.
    Illingworth M; Hooppaw AJ; Ruan L; Fisher DJ; Chen L
    J Bacteriol; 2017 Jun; 199(12):. PubMed ID: 28396349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and characterization of chaperonins 60 and 10 from Methylobacillus glycogenes.
    Kawata Y; Doi K; Omoto H; Mizobata T; Nagai J
    Cell Stress Chaperones; 1998 Sep; 3(3):200-7. PubMed ID: 9764760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A modified Escherichia coli chaperonin (groEL) polypeptide synthesized in tobacco and targeted to the chloroplasts.
    Wu HB; Feist GL; Hemmingsen SM
    Plant Mol Biol; 1993 Sep; 22(6):1087-100. PubMed ID: 8104528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter-ring communication allows the GroEL chaperonin complex to distinguish between different substrates.
    van Duijn E; Heck AJ; van der Vies SM
    Protein Sci; 2007 May; 16(5):956-65. PubMed ID: 17456746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin.
    Kubota H; Hynes G; Carne A; Ashworth A; Willison K
    Curr Biol; 1994 Feb; 4(2):89-99. PubMed ID: 7953530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding.
    Jackson GS; Staniforth RA; Halsall DJ; Atkinson T; Holbrook JJ; Clarke AR; Burston SG
    Biochemistry; 1993 Mar; 32(10):2554-63. PubMed ID: 8095403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mycobacterial chaperonins: the tail wags the dog.
    Colaco CA; MacDougall A
    FEMS Microbiol Lett; 2014 Jan; 350(1):20-4. PubMed ID: 24102684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding.
    Lin Z; Puchalla J; Shoup D; Rye HS
    J Biol Chem; 2013 Oct; 288(43):30944-55. PubMed ID: 24022487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes.
    Tsai YC; Mueller-Cajar O; Saschenbrecker S; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2012 Jun; 287(24):20471-81. PubMed ID: 22518837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of a GroES (CPN10)-related sequence motif in the GroEL (CPN60) chaperonins.
    Gupta RS
    Biochem Mol Biol Int; 1994 Jun; 33(3):591-5. PubMed ID: 7951076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.