BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21483802)

  • 1. From molecular signal activation to locomotion: an integrated, multiscale analysis of cell motility on defined matrices.
    Pathak A; Kumar S
    PLoS One; 2011 Mar; 6(3):e18423. PubMed ID: 21483802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent regulation of tumor cell migration by matrix stiffness and confinement.
    Pathak A; Kumar S
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10334-9. PubMed ID: 22689955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.
    Pathak A
    Phys Biol; 2018 Jun; 15(6):065001. PubMed ID: 29648543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices.
    Cao X; Ban E; Baker BM; Lin Y; Burdick JA; Chen CS; Shenoy VB
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4549-E4555. PubMed ID: 28468803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration.
    Pathak A; Kumar S
    Integr Biol (Camb); 2013 Aug; 5(8):1067-75. PubMed ID: 23832051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic strategy for the dynamic and graded control of cell mechanics, motility, and matrix remodeling.
    MacKay JL; Keung AJ; Kumar S
    Biophys J; 2012 Feb; 102(3):434-42. PubMed ID: 22325265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network.
    Kim MC; Whisler J; Silberberg YR; Kamm RD; Asada HH
    PLoS Comput Biol; 2015 Oct; 11(10):e1004535. PubMed ID: 26436883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.
    Doyle AD; Carvajal N; Jin A; Matsumoto K; Yamada KM
    Nat Commun; 2015 Nov; 6():8720. PubMed ID: 26548801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion.
    Ahmadzadeh H; Webster MR; Behera R; Jimenez Valencia AM; Wirtz D; Weeraratna AT; Shenoy VB
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1617-E1626. PubMed ID: 28196892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic model of integrin-mediated signaling and adhesion dynamics at the leading edges of migrating cells.
    Cirit M; Krajcovic M; Choi CK; Welf ES; Horwitz AF; Haugh JM
    PLoS Comput Biol; 2010 Feb; 6(2):e1000688. PubMed ID: 20195494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key role for Rac in the early transcriptional response to extracellular matrix stiffness and stiffness-dependent repression of ATF3.
    Dang I; Brazzo JA; Bae Y; Assoian RK
    J Cell Sci; 2023 Oct; 136(19):. PubMed ID: 37737020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness.
    Pathak A; Kumar S
    Integr Biol (Camb); 2011 Apr; 3(4):267-78. PubMed ID: 21210057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells.
    Keung AJ; de Juan-Pardo EM; Schaffer DV; Kumar S
    Stem Cells; 2011 Nov; 29(11):1886-97. PubMed ID: 21956892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-extracellular matrix mechanotransduction in 3D.
    Saraswathibhatla A; Indana D; Chaudhuri O
    Nat Rev Mol Cell Biol; 2023 Jul; 24(7):495-516. PubMed ID: 36849594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments.
    Tozluoglu M; Mao Y; Bates PA; Sahai E
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keratocyte mechanobiology.
    Petroll WM; Varner VD; Schmidtke DW
    Exp Eye Res; 2020 Nov; 200():108228. PubMed ID: 32919993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rho family GTPases regulate VEGF-stimulated endothelial cell motility.
    Soga N; Namba N; McAllister S; Cornelius L; Teitelbaum SL; Dowdy SF; Kawamura J; Hruska KA
    Exp Cell Res; 2001 Sep; 269(1):73-87. PubMed ID: 11525641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion.
    Peyton SR; Putnam AJ
    J Cell Physiol; 2005 Jul; 204(1):198-209. PubMed ID: 15669099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model coupling polarity signaling to cell adhesion explains diverse cell migration patterns.
    Holmes WR; Park J; Levchenko A; Edelstein-Keshet L
    PLoS Comput Biol; 2017 May; 13(5):e1005524. PubMed ID: 28472054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.