These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21483914)

  • 21. Copper-catalyzed synthesis of α-amino imides from tertiary amines: Ugi-type three-component assemblies involving direct functionalization of sp3 C-Hs adjacent to nitrogen atoms.
    Ye X; Xie C; Pan Y; Han L; Xie T
    Org Lett; 2010 Oct; 12(19):4240-3. PubMed ID: 20828188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemoselective aromatic azido reduction with concomitant aliphatic azide employing Al/Gd triflates/NaI and ESI-MS mechanistic studies.
    Kamal A; Markandeya N; Shankaraiah N; Reddy CR; Prabhakar S; Reddy CS; Eberlin MN; Silva Santos L
    Chemistry; 2009 Jul; 15(29):7215-24. PubMed ID: 19544509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycosylated N-sulfonylamidines: highly efficient copper-catalyzed multicomponent reaction with sugar alkynes, sulfonyl azides, and amines.
    Mandal S; Gauniyal HM; Pramanik K; Mukhopadhyay B
    J Org Chem; 2007 Dec; 72(25):9753-6. PubMed ID: 17985923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electropolymerization of intercalator-grafted conducting polymer for direct and amplified DNA detection.
    Tansil NC; Kantchev EA; Gao Z; Yu HH
    Chem Commun (Camb); 2011 Feb; 47(5):1533-5. PubMed ID: 21088780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes.
    Guo M; Chen J; Liu D; Nie L; Yao S
    Bioelectrochemistry; 2004 Apr; 62(1):29-35. PubMed ID: 14990323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines.
    Balagam B; Richardson DE
    Inorg Chem; 2008 Feb; 47(3):1173-8. PubMed ID: 18179203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-catalyzed rearrangement of tertiary amines through oxidation of aliphatic C-H bonds in air or oxygen: direct synthesis of α-amino acetals.
    Tian JS; Loh TP
    Angew Chem Int Ed Engl; 2010 Nov; 49(45):8417-20. PubMed ID: 20878822
    [No Abstract]   [Full Text] [Related]  

  • 28. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules.
    Sperry JB; Wright DL
    Chem Soc Rev; 2006 Jul; 35(7):605-21. PubMed ID: 16791332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine.
    Bae I; Han H; Chang S
    J Am Chem Soc; 2005 Feb; 127(7):2038-9. PubMed ID: 15713069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protecting-group-free synthesis of amines: synthesis of primary amines from aldehydes via reductive amination.
    Dangerfield EM; Plunkett CH; Win-Mason AL; Stocker BL; Timmer MS
    J Org Chem; 2010 Aug; 75(16):5470-7. PubMed ID: 20666449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An unexpected diethyl azodicarboxylate-promoted dehydrogenation of tertiaryamine and tandem reaction with sulfonyl azide.
    Xu X; Li X; Ma L; Ye N; Weng B
    J Am Chem Soc; 2008 Oct; 130(43):14048-9. PubMed ID: 18826314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Synthesis of N-(2-carboxy-thieno(2,3-b)pyridin-3-yl)amidines by means of reaction of 4-oxo-4H-pyrido(3',2':4,5)thieno(3,2-d)-1,3-oxazines with primary aliphatic amines].
    Vieweg H; Leistner S; Wagner G
    Pharmazie; 1992 Dec; 47(12):914-6. PubMed ID: 1293614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Model electrochemical-mass spectrometric studies of the cytochrome P450-catalyzed oxidations of cyclic tertiary allylamines.
    Jurva U; Bissel P; Isin EM; Igarashi K; Kuttab S; Castagnoli N
    J Am Chem Soc; 2005 Sep; 127(35):12368-77. PubMed ID: 16131218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical deallylation of alpha-allyl cyclic amines and synthesis of optically active quaternary cyclic amino acids.
    Kirira PG; Kuriyama M; Onomura O
    Chemistry; 2010 Apr; 16(13):3970-82. PubMed ID: 20175166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative amide synthesis directly from alcohols with amines.
    Chen C; Hong SH
    Org Biomol Chem; 2011 Jan; 9(1):20-6. PubMed ID: 21063590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical functionalization of 1,3-diisopropylbenzene.
    Bohn MA; Hilt G; Bolze P; Gürtler C
    ChemSusChem; 2010 Jul; 3(7):823-8. PubMed ID: 20468025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines.
    Largeron M; Fleury MB; Strolin Benedetti M
    Org Biomol Chem; 2010 Aug; 8(16):3796-800. PubMed ID: 20574584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerobic ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide.
    Murahashi S; Komiya N; Terai H; Nakae T
    J Am Chem Soc; 2003 Dec; 125(50):15312-3. PubMed ID: 14664574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An expedient synthesis of mellitic triimides.
    Rose KG; Jaber DM; Gondo CA; Hamilton DG
    J Org Chem; 2008 May; 73(10):3950-3. PubMed ID: 18402476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
    Tanaka M; Sawaguchi T; Sato Y; Yoshioka K; Niwa O
    Langmuir; 2011 Jan; 27(1):170-8. PubMed ID: 21117684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.