BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21483976)

  • 1. Creation of nanostructures by interference lithography for modulation of cell behavior.
    Zhu M; Zhou L; Li B; Dawood MK; Wan G; Lai CQ; Cheng H; Leong KC; Rajagopalan R; Too HP; Choi WK
    Nanoscale; 2011 Jul; 3(7):2723-9. PubMed ID: 21483976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale ordered silicon microtube arrays fabricated by Poisson spot lithography.
    Tian S; Xia X; Sun W; Li W; Li J; Gu C
    Nanotechnology; 2011 Sep; 22(39):395301. PubMed ID: 21891843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale fabrication of multiple proteins and topographical structures by combining capillary force lithography and microscope projection photolithography.
    Kwon KW; Choi JC; Suh KY; Doh J
    Langmuir; 2011 Apr; 27(7):3238-43. PubMed ID: 21348500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of synthetic nanostructures in dictating cellular response.
    Yim EK; Leong KW
    Nanomedicine; 2005 Mar; 1(1):10-21. PubMed ID: 17292053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata.
    Tsai WB; Lin JH
    Acta Biomater; 2009 Jun; 5(5):1442-54. PubMed ID: 19201667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale patterning of protein using electron beam lithography of organosilane self-assembled monolayers.
    Zhang GJ; Tanii T; Zako T; Hosaka T; Miyake T; Kanari Y; Funatsu T; Ohdomari I
    Small; 2005 Aug; 1(8-9):833-7. PubMed ID: 17193534
    [No Abstract]   [Full Text] [Related]  

  • 9. BV-2 microglial cells sense micro-nanotextured silicon surface topology.
    Persheyev S; Fan Y; Irving A; Rose MJ
    J Biomed Mater Res A; 2011 Oct; 99(1):135-40. PubMed ID: 21812094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submicron-patterning of bulk titanium by nanoimprint lithography and reactive ion etching.
    Domanski M; Luttge R; Lamers E; Walboomers XF; Winnubst L; Jansen JA; Gardeniers JG
    Nanotechnology; 2012 Feb; 23(6):065306. PubMed ID: 22248677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces.
    Xiu Y; Liu Y; Hess DW; Wong CP
    Nanotechnology; 2010 Apr; 21(15):155705. PubMed ID: 20332558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of protein-surface interactions on nanopatterned polymer films.
    Lau KH; Bang J; Hawker CJ; Kim DH; Knoll W
    Biomacromolecules; 2009 May; 10(5):1061-6. PubMed ID: 19301909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein surface patterning using nanoscale PEG hydrogels.
    Hong Y; Krsko P; Libera M
    Langmuir; 2004 Dec; 20(25):11123-6. PubMed ID: 15568866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D ordered nanostructures fabricated by nanosphere lithography using an organometallic etch mask.
    Ling XY; Acikgoz C; Phang IY; Hempenius MA; Reinhoudt DN; Vancso GJ; Huskens J
    Nanoscale; 2010 Aug; 2(8):1455-60. PubMed ID: 20820734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance.
    Cho SJ; An T; Kim JY; Sung J; Lim G
    Chem Commun (Camb); 2011 Jun; 47(21):6108-10. PubMed ID: 21523314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning of DNA nanostructures on silicon surface by electron beam lithography of self-assembled monolayer.
    Zhang GJ; Tanii T; Funatsu T; Ohdomari I
    Chem Commun (Camb); 2004 Apr; (7):786-7. PubMed ID: 15045063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell adhesion and migration on nanopatterned substrates and their effects on cell-capture yield.
    Kim DJ; Seol JK; Lee G; Kim GS; Lee SK
    Nanotechnology; 2012 Oct; 23(39):395102. PubMed ID: 22971755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoembossed polymer substrates for biomedical surface interaction studies.
    Mills CA; Martinez E; Errachid A; Engel E; Funes M; Moormann C; Wahlbrink T; Gomila G; Planell J; Samitier J
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4588-94. PubMed ID: 18283849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FIB-nanostructured surfaces and investigation of Bio/nonbio interactions at the nanoscale.
    Raffa V; Vittorio O; Pensabene V; Menciassi A; Dario P
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):1-10. PubMed ID: 18334450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.