BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21484376)

  • 1. The production of [124I]iodine and [86Y]yttrium.
    Schmitz J
    Eur J Nucl Med Mol Imaging; 2011 May; 38 Suppl 1():S4-9. PubMed ID: 21484376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiochemical studies relevant to 86Y production via 86Sr(p,n)86Y for PET imaging.
    Sadeghi M; Aboudzadeh M; Zali A; Mirzaii M; Bolourinovin F
    Appl Radiat Isot; 2009 Jan; 67(1):7-10. PubMed ID: 18930657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targetry of SrCO(3) on a copper substrate by sedimentation method for the cyclotron production no-carrier-added (86)Y.
    Sadeghi M; Zali A; Aboudzadeh M; Sarabadani P; Aslani G; Majdabadi A
    Appl Radiat Isot; 2009 Nov; 67(11):2029-32. PubMed ID: 19110437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PET tracers based on (86)Y.
    Huang J; Cui L; Wang F; Liu Z
    Curr Radiopharm; 2011 Apr; 4(2):122-30. PubMed ID: 22191651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging.
    Saha GB; MacIntyre WJ; Go RT
    Semin Nucl Med; 1992 Jul; 22(3):150-61. PubMed ID: 1523413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging?
    Walrand S; Flux GD; Konijnenberg MW; Valkema R; Krenning EP; Lhommel R; Pauwels S; Jamar F
    Eur J Nucl Med Mol Imaging; 2011 May; 38 Suppl 1():S57-68. PubMed ID: 21484382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclotron Production of PET Radiometals in Liquid Targets: Aspects and Prospects.
    Pandey MK; DeGrado TR
    Curr Radiopharm; 2021; 14(4):325-339. PubMed ID: 32867656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron.
    Sadeghi M; Aboudzadeh M; Zali A; Zeinali B
    Appl Radiat Isot; 2009; 67(7-8):1392-6. PubMed ID: 19285420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease.
    Wadas TJ; Wong EH; Weisman GR; Anderson CJ
    Chem Rev; 2010 May; 110(5):2858-902. PubMed ID: 20415480
    [No Abstract]   [Full Text] [Related]  

  • 10. Availability of yttrium-90 from strontium-90: a nuclear medicine perspective.
    Chakravarty R; Dash A; Pillai MR
    Cancer Biother Radiopharm; 2012 Dec; 27(10):621-41. PubMed ID: 23009585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of CdZnTe as neutron detector around medical accelerators.
    Martín-Martín A; Iñiguez MP; Luke PN; Barquero R; Lorente A; Morchón J; Gallego E; Quincoces G; Martí-Climent JM
    Radiat Prot Dosimetry; 2009 Feb; 133(4):193-9. PubMed ID: 19329512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclotrons and radiopharmaceuticals in positron emission tomography. Council on Scientific Affairs. Report of the Positron Emission Tomography Panel.
    JAMA; 1988 Mar; 259(12):1854-60. PubMed ID: 3278157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of non-standard PET radionuclides and the application of radiopharmaceuticals labeled with these nuclides.
    Welch MJ; Laforest R; Lewis JS
    Ernst Schering Res Found Workshop; 2007; (62):159-81. PubMed ID: 17172155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional positron emission tomography imaging with 124I and 86Y.
    Vandenberghe S
    Nucl Med Commun; 2006 Mar; 27(3):237-45. PubMed ID: 16479243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and separation of non-carrier-added 86Y from enriched 86Sr targets.
    Avila-Rodriguez MA; Nye JA; Nickles RJ
    Appl Radiat Isot; 2008 Jan; 66(1):9-13. PubMed ID: 17869530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y.
    Soderlund AT; Chaal J; Tjio G; Totman JJ; Conti M; Townsend DW
    J Nucl Med; 2015 Aug; 56(8):1285-91. PubMed ID: 26135111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated processing of solid target
    Dinh T; Panopoulos H; Poniger S; Scott AM
    Appl Radiat Isot; 2022 Mar; 181():110052. PubMed ID: 35032841
    [No Abstract]   [Full Text] [Related]  

  • 18. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y.
    Pal S; Chattopadhyay S; Das MK; Sudersanan M
    Appl Radiat Isot; 2006 Dec; 64(12):1521-7. PubMed ID: 16822676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regressive DOTA labelling performance with indium-111 and yttrium-90 over a week of use.
    Hainsworth JE; Mather SJ
    Eur J Nucl Med Mol Imaging; 2005 Nov; 32(11):1348. PubMed ID: 16142470
    [No Abstract]   [Full Text] [Related]  

  • 20. Preparation of high specific activity (86)Y using a small biomedical cyclotron.
    Yoo J; Tang L; Perkins TA; Rowland DJ; Laforest R; Lewis JS; Welch MJ
    Nucl Med Biol; 2005 Nov; 32(8):891-7. PubMed ID: 16253815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.