These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21484395)

  • 41. The leading joint hypothesis for spatial reaching arm motions.
    Ambike S; Schmiedeler JP
    Exp Brain Res; 2013 Feb; 224(4):591-603. PubMed ID: 23229774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Movement unpredictability and temporal constraints affect the integration of muscle fatigue information into forward models.
    Monjo F; Forestier N
    Neuroscience; 2014 Sep; 277():584-94. PubMed ID: 25086315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Muscle fatigue does not lead to increased instability of upper extremity repetitive movements.
    Gates DH; Dingwell JB
    J Biomech; 2010 Mar; 43(5):913-9. PubMed ID: 19942220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscular and kinematic adaptations to fatiguing repetitive upper extremity work.
    McDonald AC; Mulla DM; Keir PJ
    Appl Ergon; 2019 Feb; 75():250-256. PubMed ID: 30509533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of stance configuration and target distance on reaching. I. Movement preparation.
    Kaminski TR; Simpkins S
    Exp Brain Res; 2001 Feb; 136(4):439-46. PubMed ID: 11291724
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of trunk support and target distance on postural adjustments prior to a rapid reaching task by seated subjects.
    Moore S; Brunt D
    Arch Phys Med Rehabil; 1991 Aug; 72(9):638-41. PubMed ID: 1859256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements.
    Gates DH; Dingwell JB
    Exp Brain Res; 2008 Jun; 187(4):573-85. PubMed ID: 18327575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of fatigue on the precision of a whole-body pointing task.
    Schmid M; Schieppati M; Pozzo T
    Neuroscience; 2006; 139(3):909-20. PubMed ID: 16504410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments.
    Leonard JA; Brown RH; Stapley PJ
    J Neurophysiol; 2009 Apr; 101(4):2120-33. PubMed ID: 19211658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of the human diaphragm during a repetitive postural task.
    Hodges PW; Gandevia SC
    J Physiol; 2000 Jan; 522 Pt 1(Pt 1):165-75. PubMed ID: 10618161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Upper trapezius muscle mechanomyographic and electromyographic activity in humans during low force fatiguing and non-fatiguing contractions.
    Madeleine P; Farina D; Merletti R; Arendt-Nielsen L
    Eur J Appl Physiol; 2002 Aug; 87(4-5):327-36. PubMed ID: 12172870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptation of joint flexibility during a reach-to-grasp movement.
    Jacquier-Bret J; Rezzoug N; Gorce P
    Motor Control; 2009 Jul; 13(3):342-61. PubMed ID: 19799170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptation of lower limb movement patterns when maintaining performance in the presence of muscle fatigue.
    Mudie KL; Gupta A; Green S; Clothier PJ
    Hum Mov Sci; 2016 Aug; 48():28-36. PubMed ID: 27101562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of fatigue at the shoulder on the contralateral upper limb kinematics and performance.
    Dupuis F; Sole G; Mercier C; Roy JS
    PLoS One; 2022; 17(4):e0266370. PubMed ID: 35363812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sex-specific effects of a repetitive fatiguing task on stability: Analysis with motor equivalence model.
    Hasanbarani F; Yang C; Bailey CA; Slopecki M; Côté JN
    J Biomech; 2021 Dec; 129():110769. PubMed ID: 34607280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of fatigue and the absence of visual feedback on shoulder motor control in an healthy population during a reaching task.
    Dube MO; Roy JS
    Gait Posture; 2019 Oct; 74():135-141. PubMed ID: 31522106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Response of the Shoulder Complex to Repetitive Work: Implications for Workplace Design.
    McDonald AC; Keir PJ
    Crit Rev Biomed Eng; 2015; 43(1):21-32. PubMed ID: 26351021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in the surface EMG signal and the biomechanics of motion during a repetitive lifting task.
    Bonato P; Boissy P; Della Croce U; Roy SH
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):38-47. PubMed ID: 12173738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.