BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21484446)

  • 21. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Jun; 21(13):5722-30. PubMed ID: 15952815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.
    Ma S; Huck WT; Balabani S
    Lab Chip; 2015 Nov; 15(22):4291-301. PubMed ID: 26394745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis.
    Baret JC; Kleinschmidt F; El Harrak A; Griffiths AD
    Langmuir; 2009 Jun; 25(11):6088-93. PubMed ID: 19292501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of interfacial tension on the dynamic behavior of droplet formation during microchannel emulsification.
    Sugiura S; Nakajima M; Oda T; Satake M; Seki M
    J Colloid Interface Sci; 2004 Jan; 269(1):178-85. PubMed ID: 14651911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental study on dynamic interfacial tension with mixture of SDS-PEG as surfactants in a coflowing microfluidic device.
    Tostado CP; Xu JH; Du AW; Luo GS
    Langmuir; 2012 Feb; 28(6):3120-8. PubMed ID: 22250701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting.
    Wu L; Chen P; Dong Y; Feng X; Liu BF
    Biomed Microdevices; 2013 Jun; 15(3):553-60. PubMed ID: 23404263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel surgery-like strategy for droplet coalescence in microchannels.
    Deng NN; Sun SX; Wang W; Ju XJ; Xie R; Chu LY
    Lab Chip; 2013 Sep; 13(18):3653-7. PubMed ID: 23877051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A double droplet trap system for studying mass transport across a droplet-droplet interface.
    Bai Y; He X; Liu D; Patil SN; Bratton D; Huebner A; Hollfelder F; Abell C; Huck WT
    Lab Chip; 2010 May; 10(10):1281-5. PubMed ID: 20445881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Droplet-based microfluidic device for multiple-droplet clustering.
    Xu J; Ahn B; Lee H; Xu L; Lee K; Panchapakesan R; Oh KW
    Lab Chip; 2012 Feb; 12(4):725-30. PubMed ID: 22159516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic interfacial tension measurements with microfluidic Y-junctions.
    Steegmans ML; Warmerdam A; Schroën KG; Boom RM
    Langmuir; 2009 Sep; 25(17):9751-8. PubMed ID: 19583180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of surface wettability on microfluidic EDGE emulsification.
    Maan AA; Sahin S; Mujawar LH; Boom R; Schroën K
    J Colloid Interface Sci; 2013 Aug; 403():157-9. PubMed ID: 23684220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microdroplet-based shift register.
    Zagnoni M; Cooper JM
    Lab Chip; 2010 Nov; 10(22):3069-73. PubMed ID: 20856984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial rheology through microfluidics.
    Martin JD; Marhefka JN; Migler KB; Hudson SD
    Adv Mater; 2011 Jan; 23(3):426-32. PubMed ID: 20799293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow.
    Muto M; Yamamoto M; Motosuke M
    Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical control of individual droplet breaking and droplet contents extraction.
    Zeng S; Pan X; Zhang Q; Lin B; Qin J
    Anal Chem; 2011 Mar; 83(6):2083-9. PubMed ID: 21338060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates.
    Benson BR; Stone HA; Prud'homme RK
    Lab Chip; 2013 Dec; 13(23):4507-11. PubMed ID: 24122050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial tension in aqueous biopolymer-surfactant mixtures.
    Spyropoulos F; Ding P; Frith WJ; Norton IT; Wolf B; Pacek AW
    J Colloid Interface Sci; 2008 Jan; 317(2):604-10. PubMed ID: 17963779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.