These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 21484790)
1. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Chiche J; Le Fur Y; Vilmen C; Frassineti F; Daniel L; Halestrap AP; Cozzone PJ; Pouysségur J; Lutz NW Int J Cancer; 2012 Apr; 130(7):1511-20. PubMed ID: 21484790 [TBL] [Abstract][Full Text] [Related]
2. Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1α-mediated transcriptional regulation. Rosafio K; Pellerin L Glia; 2014 Mar; 62(3):477-90. PubMed ID: 24375723 [TBL] [Abstract][Full Text] [Related]
3. AMP-activated protein kinase is dispensable for maintaining ATP levels and for survival following inhibition of glycolysis, but promotes tumour engraftment of Ras-transformed fibroblasts. Pelletier J; Roux D; Viollet B; Mazure NM; Pouysségur J Oncotarget; 2015 May; 6(14):11833-47. PubMed ID: 26059436 [TBL] [Abstract][Full Text] [Related]
4. 1α,25(OH) 2D3 Sensitive Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Ishikawa Cells. Zeng N; Zhou Y; Zhang S; Singh Y; Shi B; Salker MS; Lang F Cell Physiol Biochem; 2017; 41(2):678-688. PubMed ID: 28222424 [TBL] [Abstract][Full Text] [Related]
5. Monocarboxylate transporter 4, associated with the acidification of synovial fluid, is a novel therapeutic target for inflammatory arthritis. Fujii W; Kawahito Y; Nagahara H; Kukida Y; Seno T; Yamamoto A; Kohno M; Oda R; Taniguchi D; Fujiwara H; Ejima A; Kishida T; Mazda O; Ashihara E Arthritis Rheumatol; 2015 Nov; 67(11):2888-96. PubMed ID: 26213210 [TBL] [Abstract][Full Text] [Related]
6. Involvement of Histidine Residue His382 in pH Regulation of MCT4 Activity. Sasaki S; Kobayashi M; Futagi Y; Ogura J; Yamaguchi H; Iseki K PLoS One; 2014; 10(4):e0122738. PubMed ID: 25919709 [TBL] [Abstract][Full Text] [Related]
7. Functional screening identifies MCT4 as a key regulator of breast cancer cell metabolism and survival. Baenke F; Dubuis S; Brault C; Weigelt B; Dankworth B; Griffiths B; Jiang M; Mackay A; Saunders B; Spencer-Dene B; Ros S; Stamp G; Reis-Filho JS; Howell M; Zamboni N; Schulze A J Pathol; 2015 Oct; 237(2):152-65. PubMed ID: 25965974 [TBL] [Abstract][Full Text] [Related]
8. Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Sáenz-de-Santa-María I; Bernardo-Castiñeira C; Secades P; Bernaldo-de-Quirós S; Rodrigo JP; Astudillo A; Chiara MD Oncotarget; 2017 Feb; 8(8):13730-13746. PubMed ID: 28099149 [TBL] [Abstract][Full Text] [Related]
9. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4. Noor SI; Pouyssegur J; Deitmer JW; Becker HM FEBS J; 2017 Jan; 284(1):149-162. PubMed ID: 27860283 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Lim KS; Lim KJ; Price AC; Orr BA; Eberhart CG; Bar EE Oncogene; 2014 Aug; 33(35):4433-41. PubMed ID: 24077291 [TBL] [Abstract][Full Text] [Related]
11. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Wang Q; Morris ME Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341 [TBL] [Abstract][Full Text] [Related]
12. The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. Tan Z; Xie N; Banerjee S; Cui H; Fu M; Thannickal VJ; Liu G J Biol Chem; 2015 Jan; 290(1):46-55. PubMed ID: 25406319 [TBL] [Abstract][Full Text] [Related]
13. Regulation of human monocarboxylate transporter 4 in skeletal muscle cells: the role of protein kinase C (PKC). Narumi K; Kobayashi M; Otake S; Furugen A; Takahashi N; Ogura J; Itagaki S; Hirano T; Yamaguchi H; Iseki K Int J Pharm; 2012 May; 428(1-2):25-32. PubMed ID: 22426323 [TBL] [Abstract][Full Text] [Related]
14. Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Marchiq I; Le Floch R; Roux D; Simon MP; Pouyssegur J Cancer Res; 2015 Jan; 75(1):171-80. PubMed ID: 25403912 [TBL] [Abstract][Full Text] [Related]
15. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. Contreras-Baeza Y; Sandoval PY; Alarcón R; Galaz A; Cortés-Molina F; Alegría K; Baeza-Lehnert F; Arce-Molina R; Guequén A; Flores CA; San Martín A; Barros LF J Biol Chem; 2019 Dec; 294(52):20135-20147. PubMed ID: 31719150 [TBL] [Abstract][Full Text] [Related]
16. Monocarboxylate transporter 4 involves in energy metabolism and drug sensitivity in hypoxia. Yamaguchi A; Mukai Y; Sakuma T; Narumi K; Furugen A; Yamada Y; Kobayashi M Sci Rep; 2023 Jan; 13(1):1501. PubMed ID: 36707650 [TBL] [Abstract][Full Text] [Related]
17. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4. Hong CS; Graham NA; Gu W; Espindola Camacho C; Mah V; Maresh EL; Alavi M; Bagryanova L; Krotee PAL; Gardner BK; Behbahan IS; Horvath S; Chia D; Mellinghoff IK; Hurvitz SA; Dubinett SM; Critchlow SE; Kurdistani SK; Goodglick L; Braas D; Graeber TG; Christofk HR Cell Rep; 2016 Feb; 14(7):1590-1601. PubMed ID: 26876179 [TBL] [Abstract][Full Text] [Related]
18. A non-catalytic function of carbonic anhydrase IX contributes to the glycolytic phenotype and pH regulation in human breast cancer cells. Mboge MY; Chen Z; Khokhar D; Wolff A; Ai L; Heldermon CD; Bozdag M; Carta F; Supuran CT; Brown KD; McKenna R; Frost CJ; Frost SC Biochem J; 2019 May; 476(10):1497-1513. PubMed ID: 31072911 [TBL] [Abstract][Full Text] [Related]
19. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. Messonnier L; Kristensen M; Juel C; Denis C J Appl Physiol (1985); 2007 May; 102(5):1936-44. PubMed ID: 17289910 [TBL] [Abstract][Full Text] [Related]
20. Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Man CH; Mercier FE; Liu N; Dong W; Stephanopoulos G; Jiang L; Jung Y; Lin CP; Leung AYH; Scadden DT Blood; 2022 Jan; 139(4):502-522. PubMed ID: 34610101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]