These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 21484936)

  • 1. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.
    Navratilova Z; Giocomo LM; Fellous JM; Hasselmo ME; McNaughton BL
    Hippocampus; 2012 Apr; 22(4):772-89. PubMed ID: 21484936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase precession of grid cells in a network model without external pacemaker.
    Thurley K; Hellmundt F; Leibold C
    Hippocampus; 2013 Sep; 23(9):786-96. PubMed ID: 23576429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampus-independent phase precession in entorhinal grid cells.
    Hafting T; Fyhn M; Bonnevie T; Moser MB; Moser EI
    Nature; 2008 Jun; 453(7199):1248-52. PubMed ID: 18480753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.
    Tocker G; Barak O; Derdikman D
    Hippocampus; 2015 Dec; 25(12):1599-613. PubMed ID: 26105192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum.
    Hasselmo ME
    Eur J Neurosci; 2008 Oct; 28(7):1301-15. PubMed ID: 18973557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular mechanisms of spatial navigation in the medial entorhinal cortex.
    Schmidt-Hieber C; Häusser M
    Nat Neurosci; 2013 Mar; 16(3):325-31. PubMed ID: 23396102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ten Years of Grid Cells.
    Rowland DC; Roudi Y; Moser MB; Moser EI
    Annu Rev Neurosci; 2016 Jul; 39():19-40. PubMed ID: 27023731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperpolarization-activated cyclic nucleotide-gated 1 independent grid cell-phase precession in mice.
    Eggink H; Mertens P; Storm E; Giocomo LM
    Hippocampus; 2014 Mar; 24(3):249-56. PubMed ID: 24638961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for the differentiation between grid and conjunctive units in medial entorhinal cortex.
    Si B; Treves A
    Hippocampus; 2013 Dec; 23(12):1410-24. PubMed ID: 23966345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells.
    Blair HT; Gupta K; Zhang K
    Hippocampus; 2008; 18(12):1239-55. PubMed ID: 19021259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grid cells in mice.
    Fyhn M; Hafting T; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1230-8. PubMed ID: 18683845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation by oscillations: implications of experimental data for theoretical models of grid cells.
    Giocomo LM; Hasselmo ME
    Hippocampus; 2008; 18(12):1186-99. PubMed ID: 19021252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entorhinal theta phase precession sculpts dentate gyrus place fields.
    Molter C; Yamaguchi Y
    Hippocampus; 2008; 18(9):919-30. PubMed ID: 18528856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A learning rule for place fields in a cortical model: theta phase precession as a network effect.
    Scarpetta S; Marinaro M
    Hippocampus; 2005; 15(7):979-89. PubMed ID: 16161059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function.
    Shay CF; Ferrante M; Chapman GW; Hasselmo ME
    Neurobiol Learn Mem; 2016 Mar; 129():83-98. PubMed ID: 26385258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology.
    Sutton NM; Gutiérrez-Guzmán BE; Dannenberg H; Ascoli GA
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields.
    Molter C; Yamaguchi Y
    Neural Netw; 2008; 21(2-3):303-10. PubMed ID: 18242058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.
    Jeewajee A; Barry C; O'Keefe J; Burgess N
    Hippocampus; 2008; 18(12):1175-85. PubMed ID: 19021251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conjunctive representation of position, direction, and velocity in entorhinal cortex.
    Sargolini F; Fyhn M; Hafting T; McNaughton BL; Witter MP; Moser MB; Moser EI
    Science; 2006 May; 312(5774):758-62. PubMed ID: 16675704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.