These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 21485008)
1. A simple and high production rate manufacturing method for submicron polymer fibres. Huttunen M; Kellomäki M J Tissue Eng Regen Med; 2011 Aug; 5(8):e239-43. PubMed ID: 21485008 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds. Sabbatier G; Abadie P; Dieval F; Durand B; Laroche G Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():347-53. PubMed ID: 24411387 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
4. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Ren L; Pandit V; Elkin J; Denman T; Cooper JA; Kotha SP Nanoscale; 2013 Mar; 5(6):2337-45. PubMed ID: 23392606 [TBL] [Abstract][Full Text] [Related]
5. Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds. Lim J; Chong MS; Chan JK; Teoh SH Small; 2014 Jun; 10(12):2495-502. PubMed ID: 24740849 [TBL] [Abstract][Full Text] [Related]
6. Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response. Guarino V; Cirillo V; Taddei P; Alvarez-Perez MA; Ambrosio L Macromol Biosci; 2011 Dec; 11(12):1694-705. PubMed ID: 22052674 [TBL] [Abstract][Full Text] [Related]
7. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
8. Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. Puppi D; Piras AM; Chiellini F; Chiellini E; Martins A; Leonor IB; Neves N; Reis R J Tissue Eng Regen Med; 2011 Apr; 5(4):253-63. PubMed ID: 20661867 [TBL] [Abstract][Full Text] [Related]
9. Simple measurements for prediction of drug release from polymer matrices - Solubility parameters and intrinsic viscosity. Madsen CG; Skov A; Baldursdottir S; Rades T; Jorgensen L; Medlicott NJ Eur J Pharm Biopharm; 2015 May; 92():1-7. PubMed ID: 25668778 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers. Wang X; Song G; Lou T; Peng W J Biomater Sci Polym Ed; 2009; 20(14):1995-2002. PubMed ID: 19874673 [TBL] [Abstract][Full Text] [Related]
11. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Abdal-hay A; Sheikh FA; Lim JK Colloids Surf B Biointerfaces; 2013 Feb; 102():635-43. PubMed ID: 23107942 [TBL] [Abstract][Full Text] [Related]
12. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245 [TBL] [Abstract][Full Text] [Related]
13. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
14. Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. Gomes ME; Azevedo HS; Moreira AR; Ellä V; Kellomäki M; Reis RL J Tissue Eng Regen Med; 2008 Jul; 2(5):243-52. PubMed ID: 18537196 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation. Pavanetto F; Genta I; Giunchedi P; Conti B J Microencapsul; 1993; 10(4):487-97. PubMed ID: 8263677 [TBL] [Abstract][Full Text] [Related]
17. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Yang F; Qu X; Cui W; Bei J; Yu F; Lu S; Wang S Biomaterials; 2006 Oct; 27(28):4923-33. PubMed ID: 16759695 [TBL] [Abstract][Full Text] [Related]
18. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication. Mulky E; Yazgan G; Maniura-Weber K; Luginbuehl R; Fortunato G; Bühlmann-Popa AM Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():277-86. PubMed ID: 25491830 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Gross KA; Rodríguez-Lorenzo LM Biomaterials; 2004 Sep; 25(20):4955-62. PubMed ID: 15109856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]