BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21485325)

  • 1. A one-degree-of-freedom assistive exoskeleton with inertia compensation: the effects on the agility of leg swing motion.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    Proc Inst Mech Eng H; 2011 Mar; 225(3):228-45. PubMed ID: 21485325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):68-77. PubMed ID: 22271684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking.
    Shirota C; Tucker MR; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():430-434. PubMed ID: 28813857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.
    Murray SA; Ha KH; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and control of the MINDWALKER exoskeleton.
    Wang S; Wang L; Meijneke C; van Asseldonk E; Hoellinger T; Cheron G; Ivanenko Y; La Scaleia V; Sylos-Labini F; Molinari M; Tamburella F; Pisotta I; Thorsteinsson F; Ilzkovitz M; Gancet J; Nevatia Y; Hauffe R; Zanow F; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):277-86. PubMed ID: 25373109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Running With an Elastic Lower Limb Exoskeleton.
    Cherry MS; Kota S; Young A; Ferris DP
    J Appl Biomech; 2016 Jun; 32(3):269-77. PubMed ID: 26694976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel actuation design of a gait trainer with shadow leg approach.
    Meuleman J; Meuleman J; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650369. PubMed ID: 24187188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.
    Tsukahara A; Hasegawa Y; Eguchi K; Sankai Y
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):308-18. PubMed ID: 25350933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-Synchronized Assistive Torque Control for the Correction of Kinematic Anomalies in the Gait Cycle.
    Aguirre-Ollinger G; Narayan A; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2305-2314. PubMed ID: 31567098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-in-the-Loop Optimization of Knee Exoskeleton Assistance for Minimizing User's Metabolic and Muscular Effort.
    Monteiro S; Figueiredo J; Fonseca P; Vilas-Boas JP; Santos CP
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of robotic knee exoskeleton on human energy expenditure.
    Gams A; Petric T; Debevec T; Babic J
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1636-44. PubMed ID: 23340585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.