These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 2148536)
1. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal. Friedman DI; Olson ER; Johnson LL; Alessi D; Craven MG Genes Dev; 1990 Dec; 4(12A):2210-22. PubMed ID: 2148536 [TBL] [Abstract][Full Text] [Related]
2. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination. Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107 [TBL] [Abstract][Full Text] [Related]
3. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Nodwell JR; Greenblatt J Cell; 1993 Jan; 72(2):261-8. PubMed ID: 7678781 [TBL] [Abstract][Full Text] [Related]
4. Mutations of the phage lambda nutL region that prevent the action of Nun, a site-specific transcription termination factor. Baron J; Weisberg RA J Bacteriol; 1992 Mar; 174(6):1983-9. PubMed ID: 1532174 [TBL] [Abstract][Full Text] [Related]
5. Phage HK022 Nun protein arrests transcription on phage lambda DNA in vitro and competes with the phage lambda N antitermination protein. Hung SC; Gottesman ME J Mol Biol; 1995 Mar; 247(3):428-42. PubMed ID: 7714899 [TBL] [Abstract][Full Text] [Related]
6. Host factor requirements for processive antitermination of transcription and suppression of pausing by the N protein of bacteriophage lambda. Mason SW; Li J; Greenblatt J J Biol Chem; 1992 Sep; 267(27):19418-26. PubMed ID: 1388170 [TBL] [Abstract][Full Text] [Related]
7. The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase. Nodwell JR; Greenblatt J Genes Dev; 1991 Nov; 5(11):2141-51. PubMed ID: 1834523 [TBL] [Abstract][Full Text] [Related]
8. N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors. Neely MN; Friedman DI Mol Microbiol; 2000 Dec; 38(5):1074-85. PubMed ID: 11123680 [TBL] [Abstract][Full Text] [Related]
9. lambda N antitermination system: functional analysis of phage interactions with the host NusA protein. Schauer AT; Carver DL; Bigelow B; Baron LS; Friedman DI J Mol Biol; 1987 Apr; 194(4):679-90. PubMed ID: 2821265 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional analyses of the transcription-translation proteins NusB and NusE. Court DL; Patterson TA; Baker T; Costantino N; Mao X; Friedman DI J Bacteriol; 1995 May; 177(9):2589-91. PubMed ID: 7730297 [TBL] [Abstract][Full Text] [Related]
11. Involvement of boxA nucleotides in the formation of a stable ribonucleoprotein complex containing the bacteriophage lambda N protein. Mogridge J; Mah TF; Greenblatt J J Biol Chem; 1998 Feb; 273(7):4143-8. PubMed ID: 9461609 [TBL] [Abstract][Full Text] [Related]
12. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Chattopadhyay S; Garcia-Mena J; DeVito J; Wolska K; Das A Proc Natl Acad Sci U S A; 1995 Apr; 92(9):4061-5. PubMed ID: 7732031 [TBL] [Abstract][Full Text] [Related]
13. Analysis of nutR, a site required for transcription antitermination in phage lambda. Zuber M; Patterson TA; Court DL Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4514-8. PubMed ID: 2955408 [TBL] [Abstract][Full Text] [Related]
14. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product. Whalen WA; Das A New Biol; 1990 Nov; 2(11):975-91. PubMed ID: 2151659 [TBL] [Abstract][Full Text] [Related]
15. Interactions of an Arg-rich region of transcription elongation protein NusA with NUT RNA: implications for the order of assembly of the lambda N antitermination complex in vivo. Zhou Y; Mah TF; Yu YT; Mogridge J; Olson ER; Greenblatt J; Friedman DI J Mol Biol; 2001 Jun; 310(1):33-49. PubMed ID: 11419935 [TBL] [Abstract][Full Text] [Related]
16. Antitermination of early transcription in phage HK022. Absence of a phage-encoded antitermination factor. Oberto J; Clerget M; Ditto M; Cam K; Weisberg RA J Mol Biol; 1993 Jan; 229(2):368-81. PubMed ID: 8429552 [TBL] [Abstract][Full Text] [Related]
17. The antiterminator NusB enhances termination at a sub-optimal Rho site. Carlomagno MS; Nappo A J Mol Biol; 2001 May; 309(1):19-28. PubMed ID: 11491288 [TBL] [Abstract][Full Text] [Related]
18. A zinc-binding region in the beta' subunit of RNA polymerase is involved in antitermination of early transcription of phage HK022. Clerget M; Jin DJ; Weisberg RA J Mol Biol; 1995 May; 248(4):768-80. PubMed ID: 7752239 [TBL] [Abstract][Full Text] [Related]
19. Effects of all single base substitutions in the loop of boxB on antitermination of transcription by bacteriophage lambda's N protein. Doelling JH; Franklin NC Nucleic Acids Res; 1989 Jul; 17(14):5565-77. PubMed ID: 2527353 [TBL] [Abstract][Full Text] [Related]
20. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes. Henthorn KS; Friedman DI J Mol Biol; 1996 Mar; 257(1):9-20. PubMed ID: 8632463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]