These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21486054)

  • 1. Generation and propagation of intense supersonic beams.
    Luria K; Christen W; Even U
    J Phys Chem A; 2011 Jun; 115(25):7362-7. PubMed ID: 21486054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A free jet (supersonic), molecular beam source with automatized, 50 nm precision nozzle-skimmer positioning.
    Eder SD; Samelin B; Bracco G; Ansperger K; Holst B
    Rev Sci Instrum; 2013 Sep; 84(9):093303. PubMed ID: 24089819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions.
    Lemos N; Lopes N; Dias JM; Viola F
    Rev Sci Instrum; 2009 Oct; 80(10):103301. PubMed ID: 19895054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets.
    Lu H; Ni G; Li R; Xu Z
    J Chem Phys; 2010 Mar; 132(12):124303. PubMed ID: 20370119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical quality of supersonic jets of various gases.
    Bogdanoff DW; Insuik RJ
    Appl Opt; 1982 Mar; 21(5):893-903. PubMed ID: 20372558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nozzle for high-density supersonic gas jets at elevated temperatures.
    Heyl CM; Schoun SB; Porat G; Green H; Ye J
    Rev Sci Instrum; 2018 Nov; 89(11):113114. PubMed ID: 30501290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.
    Lu H; Chen G; Ni G; Li R; Xu Z
    J Phys Chem A; 2010 Jan; 114(1):2-9. PubMed ID: 19957980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.
    Irimia D; Dobrikov D; Kortekaas R; Voet H; van den Ende DA; Groen WA; Janssen MH
    Rev Sci Instrum; 2009 Nov; 80(11):113303. PubMed ID: 19947724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing radical molecular beams by skimmer cooling.
    Wu H; Reens D; Langen T; Shagam Y; Fontecha D; Ye J
    Phys Chem Chem Phys; 2018 May; 20(17):11615-11621. PubMed ID: 29658040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity distributions in microskimmer supersonic expansion helium beams: High precision measurements and modeling.
    Eder SD; Salvador Palau A; Kaltenbacher T; Bracco G; Holst B
    Rev Sci Instrum; 2018 Nov; 89(11):113301. PubMed ID: 30501316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stationary flow conditions in pulsed supersonic beams.
    Christen W
    J Chem Phys; 2013 Oct; 139(15):154202. PubMed ID: 24160505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supersonic gas jets for laser-plasma experiments.
    Schmid K; Veisz L
    Rev Sci Instrum; 2012 May; 83(5):053304. PubMed ID: 22667614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiments with rectangular supersonic jets with potential noise reduction technology.
    Scupski N; Akatsuka J; McLaughlin DK; Morris PJ
    J Acoust Soc Am; 2022 Jan; 151(1):56. PubMed ID: 35105007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the non-equal aligned nozzles for fuel injection inside the supersonic combustion chamber.
    Fan Z; Wang L; Xu F; Zhang X; Xie B; Wen Y; Li H; Aminian S
    Sci Rep; 2024 Jun; 14(1):12812. PubMed ID: 38834714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow.
    Söller C; Wenskus R; Middendorf P; Meier GE; Obermeier F
    Appl Opt; 1994 May; 33(14):2921-32. PubMed ID: 20885654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
    Liu Y
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new high intensity and short-pulse molecular beam valve.
    Yan B; Claus PF; van Oorschot BG; Gerritsen L; Eppink AT; van de Meerakker SY; Parker DH
    Rev Sci Instrum; 2013 Feb; 84(2):023102. PubMed ID: 23464190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossed-beam intermodulated fluorescence spectroscopy as a spatially resolved temperature diagnostic for supersonic nozzles.
    Phillips GT; Perram GP
    Appl Opt; 2009 Sep; 48(26):4917-21. PubMed ID: 19745854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of predictive performance models for supersonic gas-jet nozzles at the Laboratory for Laser Energetics.
    McMillen KR; Heuer PV; Gjevre JM; Milder AL; Charles P; Filkins T; Rinderknecht HG; Froula DH; Shaw JL
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39016699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed rotating supersonic source for merged molecular beams.
    Sheffield L; Hickey MS; Krasovitskiy V; Rathnayaka KD; Lyuksyutov IF; Herschbach DR
    Rev Sci Instrum; 2012 Jun; 83(6):064102. PubMed ID: 22755644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.