BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 21486307)

  • 1. Phytoextraction of toxic metals: a central role for glutathione.
    Seth CS; Remans T; Keunen E; Jozefczak M; Gielen H; Opdenakker K; Weyens N; Vangronsveld J; Cuypers A
    Plant Cell Environ; 2012 Feb; 35(2):334-46. PubMed ID: 21486307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review.
    Lebeau T; Braud A; Jézéquel K
    Environ Pollut; 2008 Jun; 153(3):497-522. PubMed ID: 17981382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of toxic metals from soil and waste water.
    Hooda V
    J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals.
    Parra R; Ulery AL; Elless MP; Blaylock MJ
    Int J Phytoremediation; 2008; 10(5):415-29. PubMed ID: 19260223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.
    Rajkumar M; Ae N; Freitas H
    Chemosphere; 2009 Sep; 77(2):153-60. PubMed ID: 19647283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione is a key player in metal-induced oxidative stress defenses.
    Jozefczak M; Remans T; Vangronsveld J; Cuypers A
    Int J Mol Sci; 2012; 13(3):3145-3175. PubMed ID: 22489146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.
    Meers E; Tack FM; Van Slycken S; Ruttens A; Du Laing G; Vangronsveld J; Verloo MG
    Int J Phytoremediation; 2008; 10(5):390-414. PubMed ID: 19260222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.
    Chaney RL; Angle JS; Broadhurst CL; Peters CA; Tappero RV; Sparks DL
    J Environ Qual; 2007; 36(5):1429-43. PubMed ID: 17766822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.
    Hernández LE; Sobrino-Plata J; Montero-Palmero MB; Carrasco-Gil S; Flores-Cáceres ML; Ortega-Villasante C; Escobar C
    J Exp Bot; 2015 May; 66(10):2901-11. PubMed ID: 25750419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.
    Khan AG
    J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione in plants: an integrated overview.
    Noctor G; Mhamdi A; Chaouch S; Han Y; Neukermans J; Marquez-Garcia B; Queval G; Foyer CH
    Plant Cell Environ; 2012 Feb; 35(2):454-84. PubMed ID: 21777251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward understanding the influence of soil metals and sulfate content on plant thiols.
    Hunaiti AA; Al-Oqlah A; Shannag NM; Abukhalaf IK; Silvestrov NA; von Deutsch DA; Bayorh MA
    J Toxicol Environ Health A; 2007 Mar; 70(6):559-67. PubMed ID: 17365609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of soil metals.
    Chaney RL; Malik M; Li YM; Brown SL; Brewer EP; Angle JS; Baker AJ
    Curr Opin Biotechnol; 1997 Jun; 8(3):279-84. PubMed ID: 9206007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation.
    Mishra S; Srivastava S; Tripathi RD; Kumar R; Seth CS; Gupta DK
    Chemosphere; 2006 Nov; 65(6):1027-39. PubMed ID: 16682069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of chelating agents in the remediation of metal-contaminated soils: a review.
    Lestan D; Luo CL; Li XD
    Environ Pollut; 2008 May; 153(1):3-13. PubMed ID: 18155817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.