BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21486482)

  • 1. Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila.
    Morra R; Yokoyama R; Ling H; Lucchesi JC
    Epigenetics Chromatin; 2011 Apr; 4():6. PubMed ID: 21486482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in
    Tikhonova E; Revel-Muroz A; Georgiev P; Maksimenko O
    Open Biol; 2024 Mar; 14(3):230270. PubMed ID: 38471568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype.
    Prabhakaran M; Kelley RL
    BMC Biol; 2010 Jun; 8():80. PubMed ID: 20537125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins.
    Maenner S; Müller M; Fröhlich J; Langer D; Becker PB
    Mol Cell; 2013 Jul; 51(2):174-84. PubMed ID: 23870143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila.
    Meller VH; Gordadze PR; Park Y; Chu X; Stuckenholz C; Kelley RL; Kuroda MI
    Curr Biol; 2000 Feb; 10(3):136-43. PubMed ID: 10679323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation.
    Lee CG; Chang KA; Kuroda MI; Hurwitz J
    EMBO J; 1997 May; 16(10):2671-81. PubMed ID: 9184214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting.
    Morra R; Smith ER; Yokoyama R; Lucchesi JC
    Mol Cell Biol; 2008 Feb; 28(3):958-66. PubMed ID: 18039854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights reveal the specific recognition of roX RNA by the dsRNA-binding domains of the RNA helicase MLE and its indispensable role in dosage compensation in Drosophila.
    Lv M; Yao Y; Li F; Xu L; Yang L; Gong Q; Xu YZ; Shi Y; Fan YJ; Tang Y
    Nucleic Acids Res; 2019 Apr; 47(6):3142-3157. PubMed ID: 30649456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutually exclusive stem-loop arrangement in roX2 RNA is essential for X-chromosome regulation in
    Ilik IA; Maticzka D; Georgiev P; Gutierrez NM; Backofen R; Akhtar A
    Genes Dev; 2017 Oct; 31(19):1973-1987. PubMed ID: 29066499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq.
    Straub T; Zabel A; Gilfillan GD; Feller C; Becker PB
    Genome Res; 2013 Mar; 23(3):473-85. PubMed ID: 23233545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster.
    Gu W; Szauter P; Lucchesi JC
    Dev Genet; 1998; 22(1):56-64. PubMed ID: 9499580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Heterochromatin by Male Specific Lethal Proteins and roX RNA in Drosophila melanogaster Males.
    Koya SK; Meller VH
    PLoS One; 2015; 10(10):e0140259. PubMed ID: 26468879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path to equality strewn with roX.
    Kelley RL
    Dev Biol; 2004 May; 269(1):18-25. PubMed ID: 15081354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function analysis of the RNA helicase maleless.
    Izzo A; Regnard C; Morales V; Kremmer E; Becker PB
    Nucleic Acids Res; 2008 Feb; 36(3):950-62. PubMed ID: 18086708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin.
    Kelley RL; Meller VH; Gordadze PR; Roman G; Davis RL; Kuroda MI
    Cell; 1999 Aug; 98(4):513-22. PubMed ID: 10481915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autoregulation of the Drosophila Noncoding roX1 RNA Gene.
    Lim CK; Kelley RL
    PLoS Genet; 2012; 8(3):e1002564. PubMed ID: 22438819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila.
    Bone JR; Lavender J; Richman R; Palmer MJ; Turner BM; Kuroda MI
    Genes Dev; 1994 Jan; 8(1):96-104. PubMed ID: 8288132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster.
    Zhou S; Yang Y; Scott MJ; Pannuti A; Fehr KC; Eisen A; Koonin EV; Fouts DL; Wrightsman R; Manning JE
    EMBO J; 1995 Jun; 14(12):2884-95. PubMed ID: 7796814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zinc finger protein Zn72D and DEAD box helicase Belle interact and control maleless mRNA and protein levels.
    Worringer KA; Chu F; Panning B
    BMC Mol Biol; 2009 Apr; 10():33. PubMed ID: 19386123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins.
    Park Y; Kelley RL; Oh H; Kuroda MI; Meller VH
    Science; 2002 Nov; 298(5598):1620-3. PubMed ID: 12446910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.