These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 21486669)
1. The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Lorite GS; Rodrigues CM; de Souza AA; Kranz C; Mizaikoff B; Cotta MA J Colloid Interface Sci; 2011 Jul; 359(1):289-95. PubMed ID: 21486669 [TBL] [Abstract][Full Text] [Related]
2. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation. Lorite GS; de Souza AA; Neubauer D; Mizaikoff B; Kranz C; Cotta MA Colloids Surf B Biointerfaces; 2013 Feb; 102():519-25. PubMed ID: 23164974 [TBL] [Abstract][Full Text] [Related]
3. A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence. Osiro D; Colnago LA; Otoboni AM; Lemos EG; de Souza AA; Coletta Filho HD; Machado MA FEMS Microbiol Lett; 2004 Jul; 236(2):313-8. PubMed ID: 15251213 [TBL] [Abstract][Full Text] [Related]
4. Disruption of Xylella fastidiosa CVC gumB and gumF genes affects biofilm formation without a detectable influence on exopolysaccharide production. Souza LC; Wulff NA; Gaurivaud P; Mariano AG; Virgílio AC; Azevedo JL; Monteiro PB FEMS Microbiol Lett; 2006 Apr; 257(2):236-42. PubMed ID: 16553859 [TBL] [Abstract][Full Text] [Related]
5. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Oh YJ; Jo W; Yang Y; Park S Ultramicroscopy; 2007 Oct; 107(10-11):869-74. PubMed ID: 17544218 [TBL] [Abstract][Full Text] [Related]
6. Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa. Fogaça AC; Zaini PA; Wulff NA; da Silva PI; Fázio MA; Miranda A; Daffre S; da Silva AM FEMS Microbiol Lett; 2010 May; 306(2):152-9. PubMed ID: 20370836 [TBL] [Abstract][Full Text] [Related]
7. [Investigation of the surface properties of Staphylococcus epidermidis strains isolated from biomaterials]. Sudağidan M; Erdem I; Cavuşoğlu C; Ciftçloğlu M Mikrobiyol Bul; 2010 Jan; 44(1):93-103. PubMed ID: 20455404 [TBL] [Abstract][Full Text] [Related]
8. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
9. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926 [TBL] [Abstract][Full Text] [Related]
10. Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Rodrigues CM; Takita MA; Coletta-Filho HD; Olivato JC; Caserta R; Machado MA; de Souza AA Appl Microbiol Biotechnol; 2008 Jan; 77(5):1145-57. PubMed ID: 17992525 [TBL] [Abstract][Full Text] [Related]
11. Study of bioadhesion on a flat plate with a yeast/glass model system. Mercier-Bonin M; Ouazzani K; Schmitz P; Lorthois S J Colloid Interface Sci; 2004 Mar; 271(2):342-50. PubMed ID: 14972611 [TBL] [Abstract][Full Text] [Related]
12. Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. Quilès F; Humbert F; Delille A Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):610-6. PubMed ID: 20004611 [TBL] [Abstract][Full Text] [Related]
13. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development. Lorite GS; Janissen R; Clerici JH; Rodrigues CM; Tomaz JP; Mizaikoff B; Kranz C; de Souza AA; Cotta MA PLoS One; 2013; 8(9):e75247. PubMed ID: 24073256 [TBL] [Abstract][Full Text] [Related]
14. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. Siboni N; Lidor M; Kramarsky-Winter E; Kushmaro A FEMS Microbiol Lett; 2007 Sep; 274(1):24-9. PubMed ID: 17578524 [TBL] [Abstract][Full Text] [Related]
15. Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa. Andersen PC; Brodbeck BV; Oden S; Shriner A; Leite B FEMS Microbiol Lett; 2007 Sep; 274(2):210-7. PubMed ID: 17610515 [TBL] [Abstract][Full Text] [Related]
16. Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy. Santos RP; Arruda TT; Carvalho CB; Carneiro VA; Braga LQ; Teixeira EH; Arruda FV; Cavada BS; Havt A; de Oliveira TM; Bezerra GA; Freire VN Microsc Microanal; 2008 Apr; 14(2):150-8. PubMed ID: 18312720 [TBL] [Abstract][Full Text] [Related]
17. Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Rodrigues DF; Elimelech M Biofouling; 2009; 25(5):401-11. PubMed ID: 19306144 [TBL] [Abstract][Full Text] [Related]
18. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. MacKintosh EE; Patel JD; Marchant RE; Anderson JM J Biomed Mater Res A; 2006 Sep; 78(4):836-42. PubMed ID: 16817192 [TBL] [Abstract][Full Text] [Related]
19. Quantitative and morphological analysis of biofilm formation on self-assembled monolayers. Ploux L; Beckendorff S; Nardin M; Neunlist S Colloids Surf B Biointerfaces; 2007 Jun; 57(2):174-81. PubMed ID: 17353117 [TBL] [Abstract][Full Text] [Related]