These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21486670)

  • 1. Nanodrop on a nanorough hydrophilic solid surface: contact angle dependence on the size, arrangement, and composition of the pillars.
    Berim GO; Ruckenstein E
    J Colloid Interface Sci; 2011 Jul; 359(1):304-10. PubMed ID: 21486670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodrop on a nanorough solid surface: density functional theory considerations.
    Berim GO; Ruckenstein E
    J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact angle of a nanodrop on a nanorough solid surface.
    Berim GO; Ruckenstein E
    Nanoscale; 2015 Feb; 7(7):3088-99. PubMed ID: 25608234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic description of a drop on a solid surface.
    Ruckenstein E; Berim GO
    Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity.
    Porcheron F; Monson PA
    Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple expression for the dependence of the nanodrop contact angle on liquid-solid interactions and temperature.
    Berim GO; Ruckenstein E
    J Chem Phys; 2009 Jan; 130(4):044709. PubMed ID: 19191406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the macroscopic contact angle on the liquid-solid interaction parameters and temperature.
    Berim GO; Ruckenstein E
    J Chem Phys; 2009 May; 130(18):184712. PubMed ID: 19449948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic calculation of the sticking force for nanodrops on an inclined surface.
    Berim GO; Ruckenstein E
    J Chem Phys; 2008 Sep; 129(11):114709. PubMed ID: 19044982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanodrop of an Ising magnetic fluid on a solid surface.
    Berim GO; Ruckenstein E
    Langmuir; 2011 Jul; 27(14):8753-60. PubMed ID: 21671604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nanodrop on the surface of a lubricating liquid covering a rough solid surface.
    Berim GO; Ruckenstein E
    Nanoscale; 2015 Oct; 7(38):15701-10. PubMed ID: 26350563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced hydrophobicity of rough polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Phys Chem B; 2007 Apr; 111(13):3336-41. PubMed ID: 17388480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting hysteresis of nanodrops on nanorough surfaces.
    Chang CC; Sheng YJ; Tsao HK
    Phys Rev E; 2016 Oct; 94(4-1):042807. PubMed ID: 27841480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations.
    Berim GO; Ruckenstein E
    Nanoscale; 2015 May; 7(17):7873-84. PubMed ID: 25855034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.
    Zhang J; Müller-Plathe F; Leroy F
    Langmuir; 2015 Jul; 31(27):7544-52. PubMed ID: 26090782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.