BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21486752)

  • 1. Finding subtypes of transcription factor motif pairs with distinct regulatory roles.
    Bais AS; Kaminski N; Benos PV
    Nucleic Acids Res; 2011 Jun; 39(11):e76. PubMed ID: 21486752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules.
    Acevedo-Luna N; Mariño-Ramírez L; Halbert A; Hansen U; Landsman D; Spouge JL
    BMC Bioinformatics; 2016 Nov; 17(1):479. PubMed ID: 27871221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained transcription factor spacing is prevalent and important for transcriptional control of mouse blood cells.
    Ng FS; Schütte J; Ruau D; Diamanti E; Hannah R; Kinston SJ; Göttgens B
    Nucleic Acids Res; 2014 Dec; 42(22):13513-24. PubMed ID: 25428352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ; Plath K; Zhou Q
    Bioinformatics; 2010 Nov; 26(22):2826-32. PubMed ID: 20870645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.
    Wang X; Lin P; Ho JWK
    BMC Genomics; 2018 Jan; 19(Suppl 1):929. PubMed ID: 29363433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices.
    Oh YM; Kim JK; Choi S; Yoo JY
    Nucleic Acids Res; 2012 Mar; 40(5):e38. PubMed ID: 22187154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data.
    Huber BR; Bulyk ML
    BMC Bioinformatics; 2006 Apr; 7():229. PubMed ID: 16643658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs.
    Garcia-Alcalde F; Blanco A; Shepherd AJ
    BMC Bioinformatics; 2010 Nov; 11():551. PubMed ID: 21059262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DREME: motif discovery in transcription factor ChIP-seq data.
    Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1653-9. PubMed ID: 21543442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEME-ChIP: motif analysis of large DNA datasets.
    Machanick P; Bailey TL
    Bioinformatics; 2011 Jun; 27(12):1696-7. PubMed ID: 21486936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of sequence motifs related to coexpression of genes using evolutionary computation.
    Fogel GB; Weekes DG; Varga G; Dow ER; Harlow HB; Onyia JE; Su C
    Nucleic Acids Res; 2004; 32(13):3826-35. PubMed ID: 15266008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary computation for discovery of composite transcription factor binding sites.
    Fogel GB; Porto VW; Varga G; Dow ER; Craven AM; Powers DM; Harlow HB; Su EW; Onyia JE; Su C
    Nucleic Acids Res; 2008 Dec; 36(21):e142. PubMed ID: 18927103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subtypes of associated protein-DNA (Transcription Factor-Transcription Factor Binding Site) patterns.
    Chan TM; Leung KS; Lee KH; Wong MH; Lau TC; Tsui SK
    Nucleic Acids Res; 2012 Oct; 40(19):9392-403. PubMed ID: 22904079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
    Yang L; Zhou T; Dror I; Mathelier A; Wasserman WW; Gordân R; Rohs R
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D148-55. PubMed ID: 24214955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.