BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21486752)

  • 21. Discovering approximate-associated sequence patterns for protein-DNA interactions.
    Chan TM; Wong KC; Lee KH; Wong MH; Lau CK; Tsui SK; Leung KS
    Bioinformatics; 2011 Feb; 27(4):471-8. PubMed ID: 21193520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovering protein-DNA binding sequence patterns using association rule mining.
    Leung KS; Wong KC; Chan TM; Wong MH; Lee KH; Lau CK; Tsui SK
    Nucleic Acids Res; 2010 Oct; 38(19):6324-37. PubMed ID: 20529874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An equilibrium partitioning model connecting gene expression and cis-motif content.
    Mellor J; DeLisi C
    Bioinformatics; 2006 Jul; 22(14):e368-74. PubMed ID: 16873495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data.
    O'Connor T; Bodén M; Bailey TL
    Nucleic Acids Res; 2017 Feb; 45(4):e19. PubMed ID: 28204599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A survey on algorithms to characterize transcription factor binding sites.
    Tognon M; Giugno R; Pinello L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37099664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene Expression Data.
    Yu CP; Li WH
    Methods Mol Biol; 2017; 1629():271-282. PubMed ID: 28623591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of regulatory motif discovery tools for transcription factor binding sites.
    Wei W; Yu XD
    Genomics Proteomics Bioinformatics; 2007 May; 5(2):131-42. PubMed ID: 17893078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A preliminary computational outputs versus experimental results: Application of sTRAP, a biophysical tool for the analysis of SNPs of transcription factor-binding sites.
    Moradifard S; Saghiri R; Ehsani P; Mirkhani F; Ebrahimi-Rad M
    Mol Genet Genomic Med; 2020 May; 8(5):e1219. PubMed ID: 32155318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.
    Müller-Molina AJ; Schöler HR; Araúzo-Bravo MJ
    PLoS One; 2012; 7(11):e49086. PubMed ID: 23209563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discriminative discovery of transcription factor binding sites from location data.
    Kawada Y; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():86-9. PubMed ID: 16447966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Bayesian search for transcriptional motifs.
    Miller AK; Print CG; Nielsen PM; Crampin EJ
    PLoS One; 2010 Nov; 5(11):e13897. PubMed ID: 21124986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding sequence motifs with Bayesian models incorporating positional information: an application to transcription factor binding sites.
    Kim NK; Tharakaraman K; Mariño-Ramírez L; Spouge JL
    BMC Bioinformatics; 2008 Jun; 9():262. PubMed ID: 18533028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments.
    Kheradpour P; Kellis M
    Nucleic Acids Res; 2014 Mar; 42(5):2976-87. PubMed ID: 24335146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Base-pair resolution detection of transcription factor binding site by deep deconvolutional network.
    Salekin S; Zhang JM; Huang Y
    Bioinformatics; 2018 Oct; 34(20):3446-3453. PubMed ID: 29757349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GSMC: Combining Parallel Gibbs Sampling with Maximal Cliques for Hunting DNA Motif.
    Pei C; Wang SL; Fang J; Zhang W
    J Comput Biol; 2017 Dec; 24(12):1243-1253. PubMed ID: 29116820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants.
    Peng FY; Hu Z; Yang RC
    BMC Genomics; 2016 Aug; 17():573. PubMed ID: 27503086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays.
    Shrestha S; Sewell JA; Santoso CS; Forchielli E; Carrasco Pro S; Martinez M; Fuxman Bass JI
    Genome Res; 2019 Sep; 29(9):1533-1544. PubMed ID: 31481462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.