BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 21486800)

  • 1. ATP-mediated glucosensing by hypothalamic tanycytes.
    Frayling C; Britton R; Dale N
    J Physiol; 2011 May; 589(Pt 9):2275-86. PubMed ID: 21486800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes.
    Benford H; Bolborea M; Pollatzek E; Lossow K; Hermans-Borgmeyer I; Liu B; Meyerhof W; Kasparov S; Dale N
    Glia; 2017 May; 65(5):773-789. PubMed ID: 28205335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purinergic signaling in hypothalamic tanycytes: potential roles in chemosensing.
    Dale N
    Semin Cell Dev Biol; 2011 Apr; 22(2):237-44. PubMed ID: 21396904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels.
    Orellana JA; Sáez PJ; Cortés-Campos C; Elizondo RJ; Shoji KF; Contreras-Duarte S; Figueroa V; Velarde V; Jiang JX; Nualart F; Sáez JC; García MA
    Glia; 2012 Jan; 60(1):53-68. PubMed ID: 21987367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purinergic signaling in tanycytes and its contribution to nutritional sensing.
    Salgado M; García-Robles MÁ; Sáez JC
    Purinergic Signal; 2021 Dec; 17(4):607-618. PubMed ID: 34018139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance.
    Bolborea M; Dale N
    Trends Neurosci; 2013 Feb; 36(2):91-100. PubMed ID: 23332797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction.
    Cortés-Campos C; Elizondo R; Llanos P; Uranga RM; Nualart F; García MA
    PLoS One; 2011 Jan; 6(1):e16411. PubMed ID: 21297988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of tanycytes in hypothalamic glucosensing.
    Elizondo-Vega R; Cortes-Campos C; Barahona MJ; Oyarce KA; Carril CA; García-Robles MA
    J Cell Mol Med; 2015 Jul; 19(7):1471-82. PubMed ID: 26081217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Hypothalamic MCT4 and MCT1-MCT4 Expressions Affects Food Intake and Alters Orexigenic and Anorexigenic Neuropeptide Expressions.
    Elizondo-Vega R; Oyarce K; Salgado M; Barahona MJ; Recabal A; Ordenes P; López S; Pincheira R; Luz-Crawford P; García-Robles MA
    Mol Neurobiol; 2020 Feb; 57(2):896-909. PubMed ID: 31578706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier.
    Garcia MA; Carrasco M; Godoy A; Reinicke K; Montecinos VP; Aguayo LG; Tapia JC; Vera JC; Nualart F
    J Cell Biochem; 2001; 80(4):491-503. PubMed ID: 11169733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma.
    Pasquettaz R; Kolotuev I; Rohrbach A; Gouelle C; Pellerin L; Langlet F
    J Comp Neurol; 2021 Feb; 529(3):553-575. PubMed ID: 32515035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network.
    Bolborea M; Pollatzek E; Benford H; Sotelo-Hitschfeld T; Dale N
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14473-14481. PubMed ID: 32513737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity.
    Porniece Kumar M; Cremer AL; Klemm P; Steuernagel L; Sundaram S; Jais A; Hausen AC; Tao J; Secher A; Pedersen TÅ; Schwaninger M; Wunderlich FT; Lowell BB; Backes H; Brüning JC
    Nat Metab; 2021 Dec; 3(12):1662-1679. PubMed ID: 34931084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior.
    Barahona MJ; Llanos P; Recabal A; Escobar-Acuña K; Elizondo-Vega R; Salgado M; Ordenes P; Uribe E; Sepúlveda FJ; Araneda RC; García-Robles MA
    Glia; 2018 Mar; 66(3):592-605. PubMed ID: 29178321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid sensing in hypothalamic tanycytes via umami taste receptors.
    Lazutkaite G; Soldà A; Lossow K; Meyerhof W; Dale N
    Mol Metab; 2017 Nov; 6(11):1480-1492. PubMed ID: 29107294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brainstem-hypothalamus neuronal circuit reduces feeding upon heat exposure.
    Benevento M; Alpár A; Gundacker A; Afjehi L; Balueva K; Hevesi Z; Hanics J; Rehman S; Pollak DD; Lubec G; Wulff P; Prevot V; Horvath TL; Harkany T
    Nature; 2024 Apr; 628(8009):826-834. PubMed ID: 38538787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient Sensing by Hypothalamic Tanycytes.
    Elizondo-Vega RJ; Recabal A; Oyarce K
    Front Endocrinol (Lausanne); 2019; 10():244. PubMed ID: 31040827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of leptin on rat ventromedial hypothalamic neurons.
    Irani BG; Le Foll C; Dunn-Meynell A; Levin BE
    Endocrinology; 2008 Oct; 149(10):5146-54. PubMed ID: 18556346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TRH neuron: a hypothalamic integrator of energy metabolism.
    Lechan RM; Fekete C
    Prog Brain Res; 2006; 153():209-35. PubMed ID: 16876577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nesfatin-1 influences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake.
    Chen X; Dong J; Jiang ZY
    Regul Pept; 2012 Aug; 177(1-3):21-6. PubMed ID: 22561448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.