BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21486802)

  • 1. Loss of olfactory cell adhesion molecule reduces the synchrony of mitral cell activity in olfactory glomeruli.
    Borisovska M; McGinley MJ; Bensen A; Westbrook GL
    J Physiol; 2011 Apr; 589(Pt 8):1927-41. PubMed ID: 21486802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cannabinoid receptor-mediated modulation of inhibitory inputs to mitral cells in the main olfactory bulb.
    Wang ZJ; Hu SS; Bradshaw HB; Sun L; Mackie K; Straiker A; Heinbockel T
    J Neurophysiol; 2019 Aug; 122(2):749-759. PubMed ID: 31215302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotransmitter regulation rather than cell-intrinsic properties shapes the high-pass filtering properties of olfactory bulb glomeruli.
    Zak JD; Schoppa NE
    J Physiol; 2022 Jan; 600(2):393-417. PubMed ID: 34891217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intranasal exposure to manganese disrupts neurotransmitter release from glutamatergic synapses in the central nervous system in vivo.
    Moberly AH; Czarnecki LA; Pottackal J; Rubinstein T; Turkel DJ; Kass MD; McGann JP
    Neurotoxicology; 2012 Oct; 33(5):996-1004. PubMed ID: 22542936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sema7A/PlxnCl signaling triggers activity-dependent olfactory synapse formation.
    Inoue N; Nishizumi H; Naritsuka H; Kiyonari H; Sakano H
    Nat Commun; 2018 May; 9(1):1842. PubMed ID: 29743476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adeno-Associated Virus-Mediated Single-Cell Labeling of Mitral Cells in the Mouse Olfactory Bulb: Insights into the Developmental Dynamics of Dendrite Remodeling.
    Togashi K; Tsuji M; Takeuchi S; Nakahama R; Koizumi H; Emoto K
    Front Cell Neurosci; 2020; 14():572256. PubMed ID: 33362468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels.
    Jammal Salameh L; Bitzenhofer SH; Hanganu-Opatz IL; Dutschmann M; Egger V
    Science; 2024 Feb; 383(6682):eadk8511. PubMed ID: 38301001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-Down Control of Inhibitory Granule Cells in the Main Olfactory Bulb Reshapes Neural Dynamics Giving Rise to a Diversity of Computations.
    Chen Z; Padmanabhan K
    Front Comput Neurosci; 2020; 14():59. PubMed ID: 32765248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions.
    Parcerisas A; Ortega-Gascó A; Pujadas L; Soriano E
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons.
    Lin YC; Frei JA; Kilander MB; Shen W; Blatt GJ
    Front Cell Neurosci; 2016; 10():263. PubMed ID: 27909399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex.
    Reimer J; McGinley MJ; Liu Y; Rodenkirch C; Wang Q; McCormick DA; Tolias AS
    Nat Commun; 2016 Nov; 7():13289. PubMed ID: 27824036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel processing of afferent olfactory sensory information.
    Vaaga CE; Westbrook GL
    J Physiol; 2016 Nov; 594(22):6715-6732. PubMed ID: 27377344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb.
    Burton SD; Urban NN
    J Neurosci; 2015 Oct; 35(42):14103-22. PubMed ID: 26490853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor.
    Deleyrolle L; Sabourin JC; Rothhut B; Fujita H; Guichet PO; Teigell M; Ripoll C; Chauvet N; Perrin F; Mamaeva D; Noda T; Mori K; Yoshihara Y; Hugnot JP
    PLoS One; 2015; 10(4):e0122337. PubMed ID: 25875008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels.
    Sheng L; Leshchyns'ka I; Sytnyk V
    J Neurosci; 2015 Jan; 35(4):1739-52. PubMed ID: 25632147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor cortex feedback influences sensory processing by modulating network state.
    Zagha E; Casale AE; Sachdev RN; McGinley MJ; McCormick DA
    Neuron; 2013 Aug; 79(3):567-78. PubMed ID: 23850595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel.
    Tucker K; Cho S; Thiebaud N; Henderson MX; Fadool DA
    J Physiol; 2013 May; 591(10):2541-61. PubMed ID: 23478133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct modes of dopamine and GABA release in a dual transmitter neuron.
    Borisovska M; Bensen AL; Chong G; Westbrook GL
    J Neurosci; 2013 Jan; 33(5):1790-6. PubMed ID: 23365218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new human DSG2-transgenic mouse model for studying the tropism and pathology of human adenoviruses.
    Wang H; Beyer I; Persson J; Song H; Li Z; Richter M; Cao H; van Rensburg R; Yao X; Hudkins K; Yumul R; Zhang XB; Yu M; Fender P; Hemminki A; Lieber A
    J Virol; 2012 Jun; 86(11):6286-302. PubMed ID: 22457526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-scale module of the rat granular retrosplenial cortex: an example of the minicolumn-like structure of the cerebral cortex.
    Ichinohe N
    Front Neuroanat; 2012; 5():69. PubMed ID: 22275884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.