These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21486881)

  • 21. Initial evaluation of the early aberration reporting system--Florida.
    Zhu Y; Wang W; Atrubin D; Wu Y
    MMWR Suppl; 2005 Aug; 54():123-30. PubMed ID: 16177703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simulation study comparing aberration detection algorithms for syndromic surveillance.
    Jackson ML; Baer A; Painter I; Duchin J
    BMC Med Inform Decis Mak; 2007 Mar; 7():6. PubMed ID: 17331250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Syndromic surveillance for local outbreaks of lower-respiratory infections: would it work?
    van den Wijngaard CC; van Asten L; van Pelt W; Doornbos G; Nagelkerke NJ; Donker GA; van der Hoek W; Koopmans MP
    PLoS One; 2010 Apr; 5(4):e10406. PubMed ID: 20454449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Simulation-Based Study on the Comparison of Statistical and Time Series Forecasting Methods for Early Detection of Infectious Disease Outbreaks.
    Yang E; Park HW; Choi YH; Kim J; Munkhdalai L; Musa I; Ryu KH
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29751672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Comparing the performance of temporal model and temporal-spatial model for outbreak detection in China Infectious Diseases Automated-alert and Response System, 2011-2013, China].
    Lai S; Liao Y; Zhang H; Li X; Ren X; Li F; Yu J; Wang L; Yu H; Lan Y; Li Z; Wang J; Yang W
    Zhonghua Yu Fang Yi Xue Za Zhi; 2014 Apr; 48(4):259-64. PubMed ID: 24969447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disease surveillance using a hidden Markov model.
    Watkins RE; Eagleson S; Veenendaal B; Wright G; Plant AJ
    BMC Med Inform Decis Mak; 2009 Aug; 9():39. PubMed ID: 19664256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Timely detection of influenza outbreaks in Iran: Evaluating the performance of the exponentially weighted moving average.
    Solgi M; Karami M; Poorolajal J
    J Infect Public Health; 2018; 11(3):389-392. PubMed ID: 28970098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An extreme value theory approach for the early detection of time clusters. A simulation-based assessment and an illustration to the surveillance of Salmonella.
    Guillou A; Kratz M; Le Strat Y
    Stat Med; 2014 Dec; 33(28):5015-27. PubMed ID: 25060768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A recursive algorithm for spatial cluster detection.
    Jiang X; Cooper GF
    AMIA Annu Symp Proc; 2007 Oct; 2007():369-73. PubMed ID: 18693860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real time spatial cluster detection using interpoint distances among precise patient locations.
    Olson KL; Bonetti M; Pagano M; Mandl KD
    BMC Med Inform Decis Mak; 2005 Jun; 5():19. PubMed ID: 15969749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An evaluation model for syndromic surveillance: assessing the performance of a temporal algorithm.
    Buckeridge DL; Switzer P; Owens D; Siegrist D; Pavlin J; Musen M
    MMWR Suppl; 2005 Aug; 54():109-15. PubMed ID: 16177701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applying cusum-based methods for the detection of outbreaks of Ross River virus disease in Western Australia.
    Watkins RE; Eagleson S; Veenendaal B; Wright G; Plant AJ
    BMC Med Inform Decis Mak; 2008 Aug; 8():37. PubMed ID: 18700044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing early outbreak detection algorithms based on their optimized parameter values.
    Wang X; Zeng D; Seale H; Li S; Cheng H; Luan R; He X; Pang X; Dou X; Wang Q
    J Biomed Inform; 2010 Feb; 43(1):97-103. PubMed ID: 19683069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal surveillance methods in the presence of spatial correlation.
    Jiang W; Han SW; Tsui KL; Woodall WH
    Stat Med; 2011 Feb; 30(5):569-83. PubMed ID: 21312220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A space-time scan statistic for detecting emerging outbreaks.
    Tango T; Takahashi K; Kohriyama K
    Biometrics; 2011 Mar; 67(1):106-15. PubMed ID: 20374242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the utility of public health surveillance using specificity, sensitivity, and lives saved.
    Kleinman KP; Abrams AM
    Stat Med; 2008 Sep; 27(20):4057-68. PubMed ID: 18407576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Syndrome and outbreak detection using chief-complaint data--experience of the Real-Time Outbreak and Disease Surveillance project.
    Wagner MM; Espino J; Tsui FC; Gesteland P; Chapman W; Ivanov O; Moore A; Wong W; Dowling J; Hutman J
    MMWR Suppl; 2004 Sep; 53():28-31. PubMed ID: 15714623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adjusting outbreak detection algorithms for surveillance during epidemic and non-epidemic periods.
    Li Z; Lai S; Buckeridge DL; Zhang H; Lan Y; Yang W
    J Am Med Inform Assoc; 2012 Jun; 19(e1):e51-3. PubMed ID: 21836157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring outbreak-detection performance by using controlled feature set simulations.
    Mandl KD; Reis B; Cassa C
    MMWR Suppl; 2004 Sep; 53():130-6. PubMed ID: 15714642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan.
    Ali MA; Ahsan Z; Amin M; Latif S; Ayyaz A; Ayyaz MN
    Public Health; 2016 May; 134():72-85. PubMed ID: 26880489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.