These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21487203)

  • 1. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.
    Chee GJ; Takami H
    Microbes Environ; 2011; 26(1):54-60. PubMed ID: 21487203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and distribution of new insertion sequences in the genome of the extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831.
    Takaki Y; Matsuki A; Chee GJ; Takami H
    DNA Res; 2004 Aug; 11(4):233-45. PubMed ID: 15500249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF.
    Wallweber GJ; Mohr S; Rennard R; Caprara MG; Lambowitz AM
    RNA; 1997 Feb; 3(2):114-31. PubMed ID: 9042940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principles of ion recognition in RNA: insights from the group II intron structures.
    Marcia M; Pyle AM
    RNA; 2014 Apr; 20(4):516-27. PubMed ID: 24570483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of 3' splice site selection and alternative splicing for an unusual group II intron from Bacillus anthracis.
    Robart AR; Montgomery NK; Smith KL; Zimmerly S
    RNA; 2004 May; 10(5):854-62. PubMed ID: 15100440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-splicing of a group IIC intron: 5' exon recognition and alternative 5' splicing events implicate the stem-loop motif of a transcriptional terminator.
    Toor N; Robart AR; Christianson J; Zimmerly S
    Nucleic Acids Res; 2006; 34(22):6461-71. PubMed ID: 17130159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alternative intron-exon pairing scheme implied by unexpected in vitro activities of group II intron RmInt1 from Sinorhizobium meliloti.
    Costa M; Michel F; Molina-Sánchez MD; Martinez-Abarca F; Toro N
    Biochimie; 2006 Jun; 88(6):711-7. PubMed ID: 16460862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes.
    Haugen P; De Jonckheere JF; Johansen S
    Eur J Biochem; 2002 Mar; 269(6):1641-9. PubMed ID: 11895434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the genome of Azotobacter vinelandii revealed the presence of two genetically distinct group II introns on the chromosome.
    Kosaraju P; Pulakat L; Gavini N
    Genetica; 2005 Jul; 124(2-3):107-15. PubMed ID: 16134325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for alternative intron-exon pairings in group II intron RmInt1 from Sinorhizobium meliloti and its relatives.
    Costa M; Michel F; Toro N
    RNA; 2006 Mar; 12(3):338-41. PubMed ID: 16431983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
    LaRoche-Johnston F; Monat C; Coulombe S; Cousineau B
    PLoS Genet; 2018 Nov; 14(11):e1007792. PubMed ID: 30462638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a self-splicing group I intron with both exons.
    Adams PL; Stahley MR; Kosek AB; Wang J; Strobel SA
    Nature; 2004 Jul; 430(6995):45-50. PubMed ID: 15175762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chloroplast chlL gene of the green alga Chlorella vulgaris C-27 contains a self-splicing group I intron.
    Kapoor M; Wakasugi T; Yoshinaga K; Sugiura M
    Mol Gen Genet; 1996 Apr; 250(6):655-64. PubMed ID: 8628225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tc1/IS3 retroposon superfamily.
    Martínez-Abarca F; Zekri S; Toro N
    Mol Microbiol; 1998 Jun; 28(6):1295-306. PubMed ID: 9680217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages.
    Foley S; Bruttin A; Brüssow H
    J Virol; 2000 Jan; 74(2):611-8. PubMed ID: 10623722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of 3' splice site selection by the catalytic core of the sunY intron of bacteriophage T4: the role of a novel base-pairing interaction in group I introns.
    Michel F; Netter P; Xu MQ; Shub DA
    Genes Dev; 1990 May; 4(5):777-88. PubMed ID: 2379829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Housekeeping recA gene interrupted by group II intron in the thermophilic Geobacillus kaustophilus.
    Chee GJ; Takami H
    Gene; 2005 Dec; 363():211-20. PubMed ID: 16242272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tertiary architecture of the Oceanobacillus iheyensis group II intron.
    Toor N; Keating KS; Fedorova O; Rajashankar K; Wang J; Pyle AM
    RNA; 2010 Jan; 16(1):57-69. PubMed ID: 19952115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excision of the Sinorhizobium meliloti group II intron RmInt1 as circles in vivo.
    Molina-Sánchez MD; Martinez-Abarca F; Toro N
    J Biol Chem; 2006 Sep; 281(39):28737-44. PubMed ID: 16887813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a group II intron in the pre-catalytic state.
    Chan RT; Robart AR; Rajashankar KR; Pyle AM; Toor N
    Nat Struct Mol Biol; 2012 Apr; 19(5):555-7. PubMed ID: 22484319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.